Struktur Data Eertree dan Variasinya dalam Menyelesaikan
Permasalahan Substring Palindrom

Hocky Yudhiono — 1906285604
hocky.yudhiono@ui.ac.1id

Fakultas Ilmu Komputer, Universitas Indonesia

1 Pendahuluan

Karya ini merupakan hasil studi pustaka dari Eertree: An efficient data structure for
processing palindromes in strings oleh Rubinchik, M. dan Shur, A. M. pada tahun 2018.
Kemiripan observasi dan alur pendekatan permasalahan yang serupa merupakan hasil pemi-
kiran dari penulis paper tersebut. Penjelasan, bukti, dan elaborasi ditulis ulang dalam bentuk
pemahaman saya.

Palindrom merupakan salah satu bentuk dari sebuah string. Sebuah string S dengan pan-
jang n disebut palindrom ketika string tersebut sama dengan kebalikan dari string itu sendiri.
Dengan kata lain, berlaku S = cico...¢p, = ¢p...coc1. Palindromic Tree atau biasa dike-
nal dengan Eertree merupakan salah satu struktur data yang ditemukan dan dirilis jurnalnya
oleh Mikhail Rubinchik pada tahun 2017. Eertree dapat melakukan berbagai macam operasi
terhadap palindrom pada sebuah string S dalam kompleksitas waktu O(nlog|o|), untuk |o|
merupakan kardinalitas dari himpunan o yang merupakan karakter berbeda yang menyusun S.

Selanjutnya, kita definisikan pula S[L, R] sebagai substring inklusif dari indeks L hingga R.

2 Masalah

Ada banyak jenis operasi yang dapat dilakukan oleh Eertree. Berikut ialah beberapa permasa-

lahan yang dapat dikerjakan dengan Eertree.
2.1 Substring Palindrom Berbeda

2.1.1 Deskripsi dan Batasan

Diberikan sebuah string S sepanjang n, tentukan ada berapa banyak substring palindrom
tak kosong berbeda yang terdapat untuk setiap prefiz S, yaitu substring S[1,1],S[1,2],S[1, 3],
...,S[1,n]. Tanpa kehilangan sifat umum, definisikan batasan-batasan untuk masalah ini ialah

sebagai berikut.

e 1 <n <1000000
e String S hanya terdiri dari huruf latin kecil (a — z). Dengan kata lain, o = [a,z]| dan
|o| = 26.

2.1.2 Contoh Masukan dan Keluaran

Algoritma menerima masukan sebuah string S sepanjang n dan akan mengembalikan n buah

bilangan bulat yang menyatakan banyaknya substring palindrom berbeda untuk setiap prefiz

S[1,4] (1 <i <n). Misalkan masukan merupakan sebuah string S = eertree. Observasi untuk

setiap prefiz S[1,4] ialah sebagai berikut.

e Untuk ¢ =1, S[1,1] = e. Hanya terdapat sebuah substring palindrom tak kosong berbeda,
yaitu {e}.

e Untuk i =2, S[1,2

e Untuk i =3, S[1,3

e Untuk i =4, S[1,4

1,5

1,6

[= ee. Terdapat dua, yaitu {e,ee}.
[
[
e Untuk i =5, S
[
[

= eer. Terdapat tiga, yaitu {e,ee,r}.
= eert. Terdapat empat, yaitu {e,ee,r, t}.

)

e Untuk i =6, S[1,
e Untuk i =7, S[1,7

]

]

]

| = eertr. Terdapat lima, yaitu {e,ee,r, t,rtr}.

| = eertre. Terdapat enam, yaitu {e, ee,r,t,ertre}.
]

= eertree. Terdapat tujuh, yaitu {e,ee,r,t,ertre, eertree}.

Maka algoritma akan mengembalikan {1,2,3,4,5,6,7}. Selain itu, struktur data Eertree ini
sendiri masih ada dan bisa digunakan untuk berbagai operasi-operasi lain yang akan dijelaskan

pada bagian selanjutnya.

3 Studi Pustaka

3.1 Struktur Data Eertree

Permasalahan yang dijelaskan di atas sebelumnya diketahui dapat diselesaikan dalam wak-
tu linear menggunakan algoritma Manacher dan/atau struktur data Suffix Tree secara online
[Rubinchik and Shur, 2018]. Istilah online di sini ialah apabila sewaktu-waktu string S ditam-
bahkan karakternya, maka jawaban masih dapat diperoleh dan tidak perlu menghitungnya dari
awal. Selain menggunakan algoritma yang di atas, permasalahan ini dapat dikerjakan menggu-
nakan Eertree yang lebih sederhana dan implementasi-nya yang lebih singkat.

Eertree mendukung operasi add (c), yaitu menambahkan sebuah karakter ke belakang string
S, dan dapat memperbaharui struktur datanya dalam O(n). Namun perlu ditekankan bahwa
kompleksitas ini merupakan kasus terburuk dalam memasukkan sebuah karakter. Selanjutnya,
dapat dibuktikan bahwa secara amortized, kompleksitas total yang dibutuhkan dalam mela-
kukan n buah operasi add(c) ialah O(nlog|o|). Perlu diketahui bahwa komponen log dalam
kompleksitas didapatkan saat menyimpan sisi-sisi atau edges dari Eertree. Dalam praktik-
nya, biasanya ¢ merupakan himpunan yang kecil sehingga bisa disimpan menggunakan array
sederhana yang membuat kompleksitas dari pembangunan Eertree ini menjadi linear.

Untuk pembahasan lebih lanjut, substring kosong atau dinotasikan dengan ¢, tidak termasuk

ke dalam substring palindrom yang dimaksud di dalam pembahasan paper ini.

Lema 3.1. Untuk setiap operasi add (c), paling banyak hanya akan ada satu substring palindrom

berbeda yang akan bertambah.

Bukti. Untuk string S sepanjang n, paling banyak terdapat n substring palindrom berbeda,
dan hanya akan ada paling banyak satu substring palindrom berbeda yang akan bertambah
bila dilakukan operasi add(c), yaitu melakukan append karakter ¢ terhadap string S saat ini.

Dengan induksi, akan dibuktikan bahwa ini benar.

Pada tahap basis, definisikan pada awalnya string S = ¢, yang merupakan string kosong.
String ini memiliki 0 substring palindrom berbeda. Pada tahap induksi, asumsikan benar untuk
setiap string sepanjang k untuk k£ > 0. Akan dibuktikan pula untuk string sepanjang k + 1.
Berikut analisis tiga kasus yang berkaitan dengan operasi add(c), dengan penomoran karakter

dalam string dimulai dari satu.

e Apabila karakter ¢ yang baru ditambahkan ¢ S[1,n], maka hanya akan satu substring
palindrom yang ditambahkan, yaitu S[n 4+ 1,n + 1] atau substring yang hanya berisi
karakter ¢ saja. Dalam kasus ini, banyaknya substring palindrom berbeda akan bertambah

satu.

e Anggap n > 0, maka sebuah substring palindrom berbeda bisa jadi akan bertambah satu
— karena bisa saja tidak bertambah — pada karakter ¢ € S[1,n] jika dan hanya jika
terdapat substring palindrom S[i, n|, dengan 1 < 4, dan berlaku S[i — 1] = ¢ atau karakter
ke-(i — 1) adalah c. Serta, tidak ada substring palindrom S[j,n|, di mana S[j — 1] = ¢
dengan 1 < j < i. Dengan kata lain, S[i,n] adalah suffiz palindrom terpanjang dari
string saat ini sedemikian hingga S[i — 1] = ¢. Perhatikan juga bila substring palindrom
ini memang sudah pernah ada sebelumnya pada S[1, n], maka substring palindromm tidak

bertambah sama sekali.

Penjelasan Berdasarkan definisi palindrom, perhatikan bahwa string u = S[i — 1,n]c
merupakan sebuah palindrom. Apabila terdapat j, (1 < j < i) sedemikian sehingga
string v = S[j — 1,n]c juga merupakan palindrom, maka jelas bahwa u merupakan
substring dari v. Tentunya substring palindrom v sudah pernah dihitung sebelumnya.
Karena v bukan substring dari setiap kemungkinan substring yang ada pada Sc, maka

terdapat penambahan sebuah substring palindrom berbeda, yaitu string v.

e Kasus terakhir, apabila tidak ada ¢ yang memenuhi kasus kedua. Bisa saja suffiz-nya
merupakan sebuah string kosong, yang berarti secara intuitif hanya akan ada paling ba-
nyak satu substring palindrom yang bertambah, yaitu S[n + 1,n + 1] atau string yang
hanya mengandung satu karakter ¢. Namun dalam kasus ini, bila ¢ € S[1, n], maka jumlah

substring palindrom berbeda akan tetap.

Berdasarkan semua kasus tersebut, maka benar bahwa paling banyak terdapat n substring

palindrom berbeda dalam string sepanjang n. O

Eertree merupakan sebuah struktur data berbentuk tree dengan masing-masing node merep-
resentasikan substring palindrom berbeda yang ada pada dalam sebuah string. Eertree dalam
bentuk paling dasarnya merupakan sebuah graf berarah dan tree.

Demi kemudahan, akan dibuat penomoran untuk node ke-i sebagai representasi node v.

Setiap node v akan disimpan beberapa informasi, antara lain sebagai berikut.

e len[v] — panjang dari subpalindrom yang direpresentasikan.
e link[v] — node suffiz link selanjutnya.
e edgelv][c] — sisi atau edge yang menghubungkan node v dengan anak-anaknya yang ber-

korespondensi dengan karakter c.

Sebuah node v yang merepresentasikan sebuah string T akan memiliki anak pada karakter
c jika dan hanya jika terdapat substring palindrom c¢T'c yang dihubungkan oleh edge[v][c] = wu,
dengan w ialah indeks node yang merepresentasikan string c¢T'c. Untuk definisi dari suffiz link
yang lebih jelas, akan dibahas pada bagian selanjutnya dalam bab ini.

Eertree memiliki 2 root, dengan kata lain Eertree bisa dikatakan merupakan sebuah forest
dengan dua buah tree. Dua root ini merupakan node khusus yang merepresentasikan palindrom
kosong. Root pertama merepresentasikan sebuah palindrom ganjil yang kosong dan memiliki
indeks —1. Berlaku len[—1] = —1 serta link[—1] = —1. Root kedua merepresentasikan sebuah
palindrom genap yang kosong dan memiliki indeks 0. Berlaku len[0] = 0 serta link[0] = —1.

Berdasarkan bukti yang telah dipaparkan sebelumnya, ketahui bahwa terdapat paling ba-
nyak n+ 2 node (n buah substring palindrom berbeda ditambah 2 node khusus) dalam Eertree

yang merepresentasikan sebuah string S dengan panjang n.

Definisi 3.2. Suffiz link sebuah node u, yaitu link[u] = v. v merupakan proper suffiz palindrom

terpanjang dari u.

—

(hhchhchhkykhhchhchhO

hhchhchhO

gI/
D+@*EZE£

Gambar 1: Ilustrasi Suffiz Link untuk String hhchhchhkykhhchhchh

Lema 3.3. Pada node ke-v, setiap edge[v][c] = u akan mengarah ke node u dengan len|u] =
len[v] 4+ 2. Secara trivial, node selain root akan memiliki tepat satu edge yang masuk ke node

tersebut.

Proposisi 3.4. Untuk string S sepanjang n, FEertree dari string ini dapat dibuat secara online

dalam kompleksitas waktu terburuk O(nlog|ol).

Bukti. Perhatikan bahwa akan dilakukan iterasi untuk setiap karakter untuk S dari 1 sampai
n. Dalam iterasi ke-i, akan disimpan posisi penunjuk node (pointer) saat ini. Penunjuk node
akan menunjuk ke node yang merepresentasikan substring palindrom terpanjang yang berakhir
pada indeks 3.

Berdasarkan setiap node v bisa kita anggap memiliki level atau tingkatan ber-
dasarkan panjangnya, yaitu len[v]. Definisikan penunjuk saat ini merupakan p untuk indeks
i. Diketahui bahwa node yang ditunjuk oleh p memiliki panjang len[p] dan merepresentasikan

substring palindrom S[i — len[p] + 1, 1].

Saat melakukan penambahan karakter baru ¢ = S[i + 1], maka akan dibandingkan apakah
S[i — len[p]] = c. Bila tidak sama, maka kita dapat membandingkannya dengan suffiz link dari
p, atau dibuat menjadi p’ := link[p]. Proses ini tentunya menurunkan panjang dari p untuk
iterasi selanjutnya. Bila saat melakukan traversal dan membandingkan S[i —len[p]] = ¢ bernilai

benar. Akan ada dua kasus yang harus diobservasi.

e Bila edge[p|[c] sudah ada, maka atur p = edgelpl[c]. Tentunya, node ini sudah ada sebe-

lumnya, dan jumlah substring palindrom berbeda tidak akan bertambah.

e Bila edge[p]]c] belum mengarah ke node mana pun, maka ditemukan sebuah substring
palindrom baru yang belum pernah ada di dalam Eertree. Akan dibuat node baru dengan
indeks terkecil yang belum ada di dalam tree, yang merepresentasikan substring c¢S[i —
len]p] +1,i]c = S[i — len[p], i+ 1]. Definisikan node ini sebagai u, arahkan edge[p|[c] := u,
dan len[u] = len[p|+ 2. Sekarang, akan dicari suffiz link dari node u. Suffiz link dari node

ini merupakan suffix palindrom kedua terpanjang yang berakhir pada indeks ¢4 1. Dalam

mencarinya, dapat dilakukan traversal terus menerus melanjutkan iterasi p’ = link[p],
hingga ditemukan p’ sedemikian sehingga S[i — len[p']] = c.
Pencarian suffiz link tentu saja akan berhenti, dengan kasus basis saat p = —1, tentunya

node tersebut akan berakhir dengan sebuah substring satu karakter ¢ dalam kasus terburuk
pencariannya. Kompleksitas waktu dari algoritma penambahan karakter ini dapat dianalisis
secara amortized.

Meskipun traversal suffix link terlihat dapat terjadi dalam ©(n) dalam kasus terburuknya,
secara keseluruhan dalam pembuatan tree ini tidak akan mencapai ©(n?). Secara intuitif,
misalkan terdapat dua pointer atau penunjuk, ! dan r. [menunjuk kepada batas kiri dari
substring palindrom terpanjang pada iterasi ke-r. Dalam setiap iterasinya, r akan bertambah
1 karena karakter baru akan ditambahkan. Saat melakukan traversal suffix link untuk mencari
nilai p selanjutnya, penunjuk [akan bertambah 1 atau bergerak ke kanan, hingga berlaku
S[l — 1] = S[r + 1] dan [akan bergerak ke kiri sebanyak satu kali setiap iterasinya.

Perhatikan bahwa pergerakan ke kanan akan terjadi paling banyak n kali secara keseluruhan,
dan tepat n kali ke kiri (tidak menutup kemungkinan terdapat sebuah iterasi yang membuat
pergerakan ke kanan dilakukan sebanyak r kali secara langsung). Secara total, pergerakan
tersebut tidak akan bergerak lebih dari 2n kali.

Selain mencari nilai p selanjutnya, mencari suffiz link dari node yang baru juga sama.
Bisa direduksi menjadi kasus mencari suffix palindrom kedua terpanjang yang ada. Simpan
pula sebuah nilai m yang menunjuk pada suffix palindrom kedua terpanjang pada iterasi ke-r.
Dengan argumen yang sama, pergerakan m secara total tidak akan bergerak lebih dari 2n kali.

Faktor kompleksitas waktu log |o| muncul saat mencari nilai dari edge[v][c], untuk sembarang
node v dan karakter c. Dengan struktur data hash, atau array sederhana, nilai indeks ini dapat
dicari dalam kompleksitas waktu O(1). Secara analisis, bisa digunakan struktur data Balanced
Binary Search Tree sederhana untuk himpunan o yang lebih banyak. Sehingga, kompleksitas
waktu dalam membuat Eertree untuk string S dengan panjang n ialah O(nlog|o|), dengan

kompleksitas memori O(n). O

4 Implementasi dan Eksperimen

Berikut ialah pseudocode dari bagian inisialisasi dari Eertree.

Algoritma 1: Melakukan inisialisasi pada Eertree

1 len[0] == —1 // Indexing O-based, 2 node khusus
2 link[0] := 0
3 len[l]:=0
4 link[1]:=0
5 lastPointer := 0 // lastPointer awalnya pada node -1
6 n:=0 // Panjang string yang sudah diproses
7 size =2 // Ukuran Eertree

Pseudocode dari bagian penambahan karakter ¢ pada Eertree saya cantumkan pula. Kom-
pleksitas waktu yang diperlukan untuk bagian ini ialah O(n). Secara total, dalam menambahkan
n karakter, dibutuhkan waktu O(n) saja.

Berikut ialah ilustrasi berjalannya algoritma saat memproses string hckkcykokoky.

(Oheszoo- > {l
T TR “\'\y =
N ARD YRR @
k
iz

I
e
)

o
) 3
-]
ckke P
! .

kokok

T
yi

¥

Gambar 2: ITlustrasi Eertree untuk String hckkcykokoky

[
I
i
-

Pada mulanya hanya akan ada node yang bertanda 0 dan —1 sebagai root. Garis putus-
putus berwarna merah ditandai sebagai suffix link dan garis biasa berwarna biru menandakan
adanya edge dari node tersebut ke anak-anaknya, dengan huruf pada edge merupakan karakter
yang berkorespondensi atas hubungan tersebut. Node penunjuk saat ini akan menunjuk pada

node yang di-highlight biru.

Gambar 3: Kondisi Eertree Setelah Inisialisasi

Pada awalnya node akan penunjuk berada pada node —1. Saat ditambahkan huruf h, akan
dicek apakah suffiz dengan panjang —1 4 2 = 1 karakter, termasuk karakter yang baru ditam-
bahkan ini merupakan palindrom. Secara trivial, jelas bahwa suffiz ini merupakan karakter.
Untuk node dengan panjang 1, suffiz link secara khusus akan dihubungkan pada node 0. Begitu

pula selanjutnya bila ditambahkan node-node lain. Perhatikan bahwa pada saat traversal suffix

Algoritma 2: Algoritma untuk melakukan add(c) pada Eertree

Masukan:

¢ — karakter yang ingin ditambahkan

n — panjang string yang sudah dimasukkan ke Eertree

lastPointer — penunjuk node setelah memasukkan karakter terakhir, yaitu S[n]
S — string yang diproses

edgelv][c] — adjacency node untuk node v terhadap setiap karakter ¢ € o
link[v] — suffiz link dari node v
len[v] — panjang dari node v

size — ukuran Eertree
1 while n — len[lastPointer] — 1 < 0 atau S[n — len[last Pointer] — 1] # ¢ do

// Mencari longest suffix palindrom terbaru
last Pointer = link[last Pointer]
3 end
if edge/lastPointer/[c] belum ada then
// Membuat node baru
5 newNode := size
6 size := size + 1
7 edge[last Pointer][c] :== newNode
8 len[newNode| = len[last Pointer] + 2
9 | if len/newNode] = 1 then
// Kasus saat panjang = 1
10 link[last Pointer] := 1
11 else
// Mencari second best suffix palindrom
12 secondBest := link[last Pointer]
13 while S[n — len[secondBest] — 1] # ¢ do
14 ‘ secondBest := link[secondBest]
15 end
16 link[newNode] := edge[secondBest]|c]
17 end
18 end

19 n:=n+1
20 lastPointer := edgellastPointer][c]

link pada node 0, akan dicek apakah suffiz palindrom dengan panjang 2, (misal hh, cc, atau kk)
merupakan palindrom. Tentunya dalam kasus ini pencocokan string tidak berhasil, sehingga

akan kembali ke suffix link-nya, yaitu —1.

Gambar 4: Kondisi Eertree

Perhatikan bahwa saat penambahan karakter ke-4, terdapat suffix palindrom kk dengan
panjang 2, selanjutnya akan dibuat node baru yang merepresentasikan substring kk. Akan
dicari suffix link untuk node baru ini. Dari k akan menuju ke node 0 traversal suffiz link-nya,
ditemukan suffiz palindrom dengan panjang 1, yaitu k. Sehingga node baru kk yang dibuat
akan dihubungkan ke k.

Pada saat penambahan karakter ke-5 kasusnya mirip. Awalnya traversal suffiz link akan
dimulai dari k, akan dicek apakah terdapat node ckc, yang bisa menjadi potensial arah suffix
link dari node baru ckkc, ternyata tidak ada. Kemudian akan lanjut ke node 0, ditemukan node

¢ sebagai suffix link dari ckkc.

(a) S[1,¢] = hckk (b) S[1,4] = hckke

Gambar 5: Kondisi Eertree

(a) S[1,] = hckkcykok (b) S[1,4] = hckkcykoko

Gambar 6: Kondisi Eertree

Proses yang sama dapat dilakukan saat penambahan string-string selanjutnya, serupa de-
ngan menangani string dengan panjang genap. Selanjutnya perhatikan juga bahwa saat pe-
nambahan karakter k pada Suffiz link pada node baru kokok akan dihubungkan

menuju node kok, karena suffix link kedua terpanjang-nya merupakan kok.

(a) S[1,i] = hckkcykokok (b) S[1,4] = hckkcykokoky

Gambar 7: Kondisi Eertree

Selanjutnya, akan dicoba implementasi Eertree tersebut pada C++4. Menggunakan kode
yang sama, dilakukan percobaan 5 kali untuk masing-masing string S yang terdiri dari huruf
latin kecil acak (a - z) sepanjang n dan dihitung rata-rata dari penggunaan waktunya hanya
dalam pembuatan Eertree untuk string tersebut. Program juga dijalankan pada komputer
penulis, sehingga perbedaan waktu pada mesin yang berbeda tidak dapat dihindari. Eksperimen

ini dilakukan hanya untuk mengetahui laju peningkatan waktu komputasi.

n 10° [10* [10° 106 107 10°
t (aproksimasi dalam ms) | 0.002 | 0.006 | 1.4126 | 10.9952 | 92.2064 | 1043.3976

Tabel 1: Waktu Pembuatan Eertree untuk String S Sepanjang n Tertentu

Untuk n = 108, waktu yang diperlukan ialah sekitar 1 detik. Bila diperhatikan, disini
perkembangan waktunya linear. Hal ini disebabkan karena |o| yang berjumlah tetap, yaitu
26. Alokasi memori disediakan oleh sistem operasi menggunakan array. Sehingga bila dihitung
menggunakan ram model, kompleksitas waktu yang diperlukan ialah ©(n). Dari eksperimen
dan pembuktian, dapat terlihat bahwa kecepatan fungsi waktu tumbuh memang bersifat linear
pula. Namun berbeda dengan kompleksitas memorinya. Dilakukan eksperimen pula untuk
banyaknya verteks rata-rata dengan batasan yang sama. Dilakukan 5 kali percobaan, dan

dihitung rata-ratanya.

n | 103 [10* [10° 10° 107 10°
Percobaan 1 | 77 | 381 996 2850 12540 29929
Percobaan 2 | 96 | 345 | 1042 | 2913 | 12591 | 30001
Percobaan 3 | 72 | 370 | 1019 | 2813 | 12577 | 30023
Percobaan 4 | 90 | 383 | 1003 | 2867 | 12595 | 29923
Percobaan 5 | 71 | 390 | 992 [2839 | 12670 | 30062

Rata-rata | 81.2 | 373.8 [1010.4 | 2856.4 | 12594.6 | 29987.6

Tabel 2: Banyaknya Verteks Eertree untuk String S Sepanjang n Tertentu

3000 M(n)

2500 3/n
2000
1500

1000

500

0.0 0.2 0.4 0.6 0.8 1.0
le6

Gambar 8: Nilai String S Acak Sepanjang n terhadap Banyaknya Verteks pada Eertree

Berdasarkan eksperimen yang saya lakukan dan pembuktian yang sudah pernah dilakukan
juga, diketahui bahwa kompleksitas memori rata-rata yang dibutuhkan Eertree untuk string S
acak sepanjang n ialah O(y/n|o|) [Rubinchik and Shur, 2016].

5 Aplikasi dan Variasi Eertree

5.1 Mencari Kemunculan Jumlah Setiap Substring Palindrom

Perhatikan bahwa saat menambahkan satu karakter ¢, kemunculan substring-substring palin-
drom (tidak harus berbeda) akan bertambah. Substring-substring ini merupakan semua subs-
tring dari root 0 atau —1 hingga ke node saat ini. Bila kita perhatikan kembali[Gambar 7.a] Saat
menambahkan karakter k, maka akan bertambah kemunculan dari kokok, kok, dan k. Untuk
menghitung ada berapa banyak kemunculan masing-masing palindrom ini, bisa ditambahkan
sebuah nilai occ[last Pointer| untuk setiap node yang dikunjungi oleh last Pointer sembari me-
masukkan setiap karakter. Setelah pembuatan Eertree selesai, iterasi dapat dilakukan untuk
indeks node yang terbesar hingga yang terkecil, dengan melakukan penambahan seperti suffiz
sum, dengan kata lain occ[link[v]] := occ[link[v]] 4+ occ[v]. Setelah komputasi ini, maka akan

didapatkan kemunculan substring tersebut untuk setiap node v.

10

Algoritma 3: Menghitung kemunculan jumlah setiap substring

1 for 7 := 1 to n do

2 add(S[i])

3 occllast Pointer| := occllast Pointer] + 1
4 end

5 for i := size to 1 do

6 | occllinkli]] := occ[linkl[i]] + occli]

7 end

5.2 Mencari Banyaknya Substring Palindrom yang Diakhiri pada Indeks Ter-

tentu

Lema 5.1. Suffiz link membentuk tree dengan root pada —1 dan 0.

Bukti. Perhatikan bahwa setiap node memiliki tepat satu suffix link dengan asumsi bahwa suffiz
link yang menghubungkan —1 dengan dirinya sendiri tidak dihitung, maka tepat terdapat n+1
edge dan n + 2 node yang terbentuk dari tree suffiz link ini untuk sebuah string S sepanjang
n. Karena suffiz link sebuah node v, yaitu link[v] = u hanya menghubungkan proper suffix
palindrom dan berlaku len[u] < len[v]. Maka dipastikan tidak ada cycle yang terbentuk pada

graf ini. Sehingga graf ini merupakan tree. O

Perhatikan bahwa banyaknya string yang diakhiri pada suatu indeks R ialah panjang atau
kedalaman node saat ini bila dilihat dari tree yang terbentuk dari suffix link-nya. Sehingga,
dapat dilakukan Breadth First Search atau Depth First Search dari node —1 hingga ke node
n. Selanjutnya, setelah melakukan add(c) untuk setiap indeks i, perlu disimpan idz[i] :=
last Pointer nilai penunjuk node setelah memasukkan karakter ke-i, yaitu S|[i].

Kemudian simpan pula nilai occ[v] untuk setiap node pada Eertree yang awalnya nilai satu.
Setelah dilakukan Depth First Search yang serupa dengan prefiz sum melalui tree suffiz link-
nya, atau occ[v] := occ[v] + occ[link[v]]. Banyaknya substring palindrom yang diakhiri pada
indeks R ialah occlidz|[R]]. Untuk mendapatkan banyaknya substring palindrom yang dimulai
pada suatu indeks L, dapat dibuat sebuah Eertree untuk kebalikan atau reverse dari string
S. Selanjutnya lakukan komputasi yang serupa. Banyaknya substring palindrom yang dimulai
pada suatu indeks L ialah occlidz[n — L + 1]].

Algoritma 4: Menghitung banyak substring yang diakhiri pada indeks R

1 for i := 1 to n do

2 add(S[i])

3 idz[i] := last Pointer

4 end

5 for i := 2 to size do

6 occli] =1

7 | occli] := occli] + occ[link]i]]
8 end

9 return occlidz[R]]

11

5.3 Lebih Dari Satu String

Eertree tidak hanya bisa mewakili satu string saja. Ada variasi lain dari Eertree yang bisa
dimanfaatkan. FEertree yang dibentuk dari beberapa string dapat dibuat dengan membuat
Eertree untuk string pertama, mengembalikan penunjuk node saat ini ke posisi node awal,
yaitu —1. Kemudian lakukan operasi pembuatan Eertree kembali untuk string kedua, dengan
tidak mengabaikan node-node, edges, dan suffix link yang sudah ada pada Fertree saat ini.
Begitu seterusnya hingga setiap string selesai diproses. Pada umumnya, untuk setiap node,
akan disimpan pula suatu penanda apakah node ini ada pada string ke-i. Sehingga, setiap node
akan menyimpan nilai tambahan exist[v][i] yang menandakan bahwa node ke-v terkandung pada

saat membuat string ke-i.

5.4 Operasi Penghapusan

Selain operasi add(c), terdapat variasi Eertree yang mendukung operasi pop(). Salah satu
yvang menjadi hambatan dalam mendukung operasi ini ialah operasi add(c) yang memiliki
kompleksitas waktu O(n). Sehingga operasi pop() dan add(c) terus menerus pada kasus ter-
buruk pencarian suffiz link terpanjang-nya, bisa menyebabkan kompleksitas O(ng). Untuk ¢

banyaknya operasi pop yang dilakukan. Salah satu kasusnya ialah:

add(h),add(h),...,add(h),add(h) add(o),pop(),...,add(o),pop)

Sebanyak n kali Sebanyak ¢ kali

Setiap kali operasi add(o) dilakukan, pencarian suffiz link dari o akan terus menerus dila-

kukan dengan suffix palindrom sebagai berikut.

hhhh...hhhh — hhhh ... hhh — --- — hhh — hh — h — Node 0 — Node —1

Sepanjang n Sepanjang n - 1

Terdapat beberapa alternatif dalam mempercepat proses add(c) ini, oleh penemu struktur

data ini, dinamakan quick link dan direct link.

5.4.1 Quick Link

Quick link pada dasarnya mempercepat proses saat ada beberapa karakter yang sama dalam
sebuah rantai suffix link. Saat traversal suffiz link, akan dilakukan perbandingan-perbandingan
karakter sebelum substring dengan karakter baru yang akan ditambahkan untuk setiap suffiz
palindrom.

Pada suffix palindrom seperti hhh...hhh atau haha...haha, huruf h akan dibandingkan
berulang-ulang kali dengan kompleksitas panjang ©(n) dengan n panjang substring tersebut.
Secara intuitif, perhatikan bahwa untuk dua huruf berbeda dalam sebuah rantai suffiz link bisa
terbuat, maka panjang palindrom harus setidaknya dua kalinya. Misalnya kita akan mencoba
secara greedy untuk membuat sebuah rantai suffiz palindrom terpendek sehingga saat tidak ada
dua huruf berurutan yang sama akan dibandingkan dalam traversal-nya. Tanpa mengurangi

sifat umum, anggap dua huruf di sini a dan h.

12

h — ah — hhah — ahahhah — hhahhahahhah — ...

Pembuktian lebih formal dan lengkapnya dapat dilihat pada jurnal [Kosolobov et al., 2015].
Karena adanya sifat ini, maka quick link dapat mempercepat traversal suffiz link dan mem-
buat kompleksitasnya hanya menjadi O(logn) untuk setiap operasi add(c). Untuk tambahan
memori sendiri hanya perlu ©(1) untuk setiap node-nya. Implementasi-nya sederhana, cukup
menambahkan sebuah variabel baru quick Link[v] = u yang menandakan u adalah node pertama

dalam rantai suffix link yang karakter ke S[i — len[u]] nya tidak sama dengan S[i — len[v]].

5.4.2 Direct Link dengan Naive Array

Berbeda dengan quick link, sesuai namanya, akan disimpan sebuah link yang menghubungkan
ke suffir palindrom dengan karakter yang langsung sama dengan karakter yang dibandingkan.
Definisikan sebuah variabel baru, misalnya u = direct[v][c] yang merupakan suffix link direct ke
node yang memiliki karakter S[i — len[u]] = c¢. Perhatikan bahwa kini kompleksitas waktunya
menjadi ©(log |o|) dengan asumsi direct link disimpan menggunakan suatu Balanced Binary
Search Tree, dan kompleksitas memorinya akan bertambah sebanyak ©(|o|) untuk setiap node-
nya.

Namun perhatikan bahwa biasanya banyak karakter dalam aplikasi sehari-hari tidak banyak,
hanya 26 pada umumnya, sehingga kompleksitas waktu dan memori tambahan untuk setiap

node-nya bisa dianggap konstan.

5.4.3 Direct Link dengan Persistent Edges

Untuk mempercepat implementasi direct link yang sebelumnya, kita dapat menggunakan suatu
struktur data persisten. Dalam kasus ini, yang paling mudah diimplementasi ialah Persistent
Segment Tree. Untuk intuisinya, anggap terdapat sebuah segment tree untuk setiap node-nya.
Pada dasarnya sebuah segment tree pada leaf ke-c akan menyimpan direct link ke-c untuk suatu
node v. Kemudian, bila ditambahkan modifikasi persisten, kurang lebih segment tree-nya akan

berbentuk sebagai berikut.

Gambar 9: Ilustrasi Persistent Segment Tree

Perhatikan bahwa tree pada sebelah kiri istilahnya menunjukkan versi lama, dan pada saat
melakukan insertion pada segment tree, akan dilakukan tambal sulam dan dibuat node-node
baru sebanyak ©(logn) untuk n ukuran segment tree, atau setara dengan kedalamannya. Per-
hatikan bahwa sekarang hanya perlu disimpan root dari setiap versi, dan bisa diakses nilai-nilai

dari setiap versinya. Sama halnya dalam kasus direct link ini, setiap versi diibaratkan seba-

13

gai suatu node v baru. Setiap kali ada node v baru yang karakternya berbeda dengan rantai
sebelumnya, maka bisa ditambahkan suatu tambal sulam baru.

Kompleksitas memori direct link yang sebelumnya harus menyimpan nilai-nilai lainnya se-
cara naif kini bisa turun. kompleksitas waktunya menjadi O(log |o|) untuk operasi add(c) dan
kompleksitas memorinya menjadi O(log |o|) pula. Untuk lebih ketatnya, perhatikan bahwa bi-
la karakter dalam rantai sama, maka tidak perlu dilakukan insertion pada persistent segment
tree, dan berdasarkan bukti yang sudah dipaparkan sebelumnya, kompleksitas rantai quick link

paling panjang hanya O(log n), maka kompleksitas memorinya ialah O(min(log|o|,log(logn))).

14

Pustaka

[Borozdin et al., 2017] Borozdin, K., Kosolobov, D., Rubinchik, M., and Shur, A. M. (2017).
Palindromic Length in Linear Time. In Karkkéinen, J., Radoszewski, J., and Rytter, W.,
editors, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78
of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1-23:12, Dagstuhl,

Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Driscoll et al., 1989] Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. (1989).
Making data structures persistent. Journal of Computer and System Sciences, 38(1):86-124.

[Fici et al., 2014] Fici, G., Gagie, T., Karkkéinen, J., and Kempa, D. (2014). A subquadratic

algorithm for minimum palindromic factorization. Journal of Discrete Algorithms, 28:41-48.

[Kosolobov et al., 2013] Kosolobov, D., Rubinchik, M., and Shur, A. M. (2013). Finding distinct

subpalindromes online.

Kosolobov et al., 2015] Kosolobov, D., Rubinchik, M., and Shur, A. M. (2015). Pal® is linear
[9 9 9 9 9 9

recognizable online.

[Mieno et al., 2022] Mieno, T., Watanabe, K., Nakashima, Y., Inenaga, S., Bannai, H., and
Takeda, M. (2022). Palindromic trees for a sliding window and its applications. Information
Processing Letters, 173:106174.

[Rubinchik and Shur, 2016] Rubinchik, M. and Shur, A. M. (2016). The number of distinct

subpalindromes in random words. Fundamenta Informaticae, 145(3):371-384.

[Rubinchik and Shur, 2018] Rubinchik, M. and Shur, A. M. (2018). Eertree: An efficient data
structure for processing palindromes in strings. Furopean Journal of Combinatorics, 68:249—
265. Combinatorial Algorithms, Dedicated to the Memory of Mirka Miller.

[Rubinchik and Shur, 2020] Rubinchik, M. and Shur, A. M. (2020). Palindromic k-factorization

in pure linear time.

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Lampiran

Kode Sumber 1: Eertree

#include <bits/stdc++.h>
using namespace std;

using namespace std::chrono;
#define sz(z) (int)(z).stze()

struct EerTree {
struct Node {
int next[26];
int suffixLink;
int length;
Node () {
memset (next, 0, sizeof(next));
suffixLink = length = O;
}
};
string s;
int n, lastPointer, lastIndex;
vector <Node> tree;
EerTree(const string &_s) {
s = _s; tree.resize(3); init();
for (int i = 0; i < sz(s); i++) {
addChar(s[il);

}
}
EerTree(int _n) {

s = ""; tree.resize(3); init();
}

void append(char ch) {
s += ch; assert(sz(tree) > sz(s));
addChar(s.back());
}
void init() {
tree[0] .suffixLink = 0;
tree[0] .length = -1;
tree[1] .suffixLink = 0;
tree[1] .length = 0;
lastPointer = n = 0;
lastIndex = 1;
}
void addChar(char ch) {
int let = ch - 'a';
while (n - tree[lastPointer].length - 1 < 0 || s[n - tree[lastPointer].length - 1]
lastPointer = tree[lastPointer].suffixLink;
if (!tree[lastPointer] .next[let]) {
tree[lastPointer] .next[let] = ++lastIndex;
if (lastIndex >= sz(tree)) tree.push_back(Node());
tree[lastIndex].length = tree[lastPointer].length + 2;
if (tree[lastIndex].length == 1) tree[lastIndex].suffixLink = 1;

I= ch)

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

10

11

else {
int ancestor = tree[lastPointer].suffixLink;
while (s[n - treelancestor].length - 1] != ch) ancestor = tree[ancestor].suffixLink;

tree[lastIndex] .suffixLink = treel[ancestor] .next[let];

}

lastPointer = tree[lastPointer].next[let];

int main() {
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(cin.failbit);
string s; cin >> s;
auto start = high_resolution_clock: :now() ;
EerTree solve(s);
auto stop = high_resolution_clock: :now() ;
auto duration = duration_cast<microseconds>(stop - start);
// cout << duration.count() << endl;

cout << solve.lastIndex - 1 << endl;

Kode Sumber 2: Kode Plot Kompleksitas Memori

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt
plt.figure(figsize=(7, 3.5))
sns.set_style(style='whitegrid')
sns.set_style({'font.family': 'CMU Serif'})
sns.lineplot(x = X, y = Y)
sns.lineplot(x = X, y = 3 * np.sqrt(X))
plt.legend(labels=["M(n)", "3\u221An"])
plt.savefig('memory.png', dpi = 300)
plt.show()

Kode Sumber 3: Kode Generator String Acak

#include <bits/stdc++.h>
using namespace std;

mt19937 rng(chrono: :steady_clock: :now() .time_since_epoch() .count());

int getRange(int a, int b){
int ran = b-at+l;

return (rng()%ran)+a;

10

11

12

13

14

15

16

int main(){
int n; cin >> n;
for(int i = 1;i <= n;i++){
cout << (char) (getRange(0, 25) + 'a');
}
cout << endl;

}

15000

12500

10000

7500

5000

2500

0.0 0.2 0.4 0.6 0.8 1.0
le7

Gambar 10: Nilai String S Acak Sepanjang n terhadap Banyaknya Verteks pada Eertree

	Pendahuluan
	Masalah
	Substring Palindrom Berbeda
	Deskripsi dan Batasan
	Contoh Masukan dan Keluaran

	Studi Pustaka
	Struktur Data Eertree

	Implementasi dan Eksperimen
	Aplikasi dan Variasi Eertree
	Mencari Kemunculan Jumlah Setiap Substring Palindrom
	Mencari Banyaknya Substring Palindrom yang Diakhiri pada Indeks Tertentu
	Lebih Dari Satu String
	Operasi Penghapusan
	Quick Link
	Direct Link dengan Naive Array
	Direct Link dengan Persistent Edges

