
Universitas Indonesia

stack.py
Joh Dilarang Toxic:

R. Fausta ”faustaadp” Anugrah Dianparama
Pikatan ”Pyqe” Arya Bramajati

Hocky ”hocky” Yudhiono

ICPC Regional Jakarta 2022

Nov 27, 2022

UI: stack.py template template .bashrc 1

Contest (1)

template.cpp
15 lines

#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
#define trav(x, v) for(auto &x : v)
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;

int main() {
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(cin.failbit);

}

template.py
Description: Fast I/O. Improves performance when reading many (≥ 104)
lines. Returns an empty string instead of raising EOFError!

5 lines

import sys
sys.setrecursionlimit(10**9)
input = lambda: sys.stdin.readline().rstrip(’\r\n’)
Many cal ls to print is also slow , consider :
print(’\n’.join(buffered_output))

.bashrc
12 lines

xmodmap -e ’clear lock’ -e ’keycode 66=less greater’ #caps =<>
go() {

#−Wall −Wshadow −Wreturn−type −Wunused nyalain aja ! pasti
berguna

glibxx debug buat ngecek out of bound di vector
#−fsanitize=undefined , address buat ngecek out of bound di

array
#−Wl,−−stack ,1073741824 buat stack size
g++ -std=c++17 -Wall -Wshadow -Wreturn-type -Wunused -

D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC -fsanitize=
undefined,address "$1".cpp -o $1

}

gg() {
./$1 < in

}

Mathematics (2)

2.1 Equations

ax2 + bx+ c = 0⇒ x =
−b±

√
b2 − 4ac

2a

The extremum is given by x = −b/2a.

ax+ by = e

cx+ dy = f
⇒
x =

ed− bf
ad− bc

y =
af − ec
ad− bc

In general, given an equation Ax = b, the solution to a variable
xi is given by

xi =
detA′i
detA

where A′i is A with the i’th column replaced by b.

2.2 Recurrences
If an = c1an−1 + · · ·+ ckan−k, and r1, . . . , rk are distinct roots of
xk + c1x

k−1 + · · ·+ ck, there are d1, . . . , dk s.t.

an = d1r
n
1 + · · ·+ dkr

n
k .

Non-distinct roots r become polynomial factors, e.g.
an = (d1n+ d2)rn.

2.3 Trigonometry

sin(v + w) = sin v cosw + cos v sinw

cos(v + w) = cos v cosw − sin v sinw

tan(v + w) =
tan v + tanw

1− tan v tanw

sin v + sinw = 2 sin
v + w

2
cos

v − w
2

cos v + cosw = 2 cos
v + w

2
cos

v − w
2

(V +W) tan(v − w)/2 = (V −W) tan(v + w)/2

where V,W are lengths of sides opposite angles v, w.

a cosx+ b sinx = r cos(x− φ)

a sinx+ b cosx = r sin(x+ φ)

where r =
√
a2 + b2, φ = atan2(b, a).

2.4 Geometry
2.4.1 Triangles
Side lengths: a, b, c

Semiperimeter: p =
a+ b+ c

2
Area: A =

√
p(p− a)(p− b)(p− c)

Circumradius: R =
abc

4A

Inradius: r =
A

p
Length of median (divides triangle into two equal-area triangles):
ma = 1

2

√
2b2 + 2c2 − a2

Length of bisector (divides angles in two):

sa =

√√√√bc

[
1−

(
a

b+ c

)2
]

Law of sines:
sinα

a
=

sinβ

b
=

sin γ

c
=

1

2R
Law of cosines: a2 = b2 + c2 − 2bc cosα

Law of tangents:
a+ b

a− b =
tan

α+ β

2

tan
α− β

22.4.2 Quadrilaterals
With side lengths a, b, c, d, diagonals e, f , diagonals angle θ, area
A and magic flux F = b2 + d2 − a2 − c2:

4A = 2ef · sin θ = F tan θ =
√

4e2f2 − F 2

For cyclic quadrilaterals the sum of opposite angles is 180◦,
ef = ac+ bd, and A =

√
(p− a)(p− b)(p− c)(p− d).2.4.3 Spherical coordinates

r

x

y

z

x = r sin θ cosφ r =
√
x2 + y2 + z2

y = r sin θ sinφ θ = acos(z/
√
x2 + y2 + z2)

z = r cos θ φ = atan2(y, x)

2.5 Derivatives/Integrals

d

dx
arcsinx =

1√
1− x2

d

dx
arccosx = − 1√

1− x2
d

dx
tanx = 1 + tan2 x

d

dx
arctanx =

1

1 + x2∫
tan ax = − ln | cos ax|

a

∫
x sin ax =

sin ax− ax cos ax

a2∫
e−x

2

=

√
π

2
erf(x)

∫
xeaxdx =

eax

a2
(ax− 1)

Integration by parts:

∫ b

a

f(x)g(x)dx = [F (x)g(x)]ba −
∫ b

a

F (x)g′(x)dx

UI: stack.py OrderStatisticTree HashMap 2

2.6 Sums

ca + ca+1 + · · ·+ cb =
cb+1 − ca

c− 1
, c 6= 1

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

12 + 22 + 32 + · · ·+ n2 =
n(2n+ 1)(n+ 1)

6

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4

14 + 24 + 34 + · · ·+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

∑n
k=0 k

(
n
k

)
= n2n−1 ∑n

k=0 k
2
(
n
k

)
= (n+ n2)2n−2

sumk
j=0

(
m
j

)(
n−m
k−j

)
=
(
n
k

) ∑n
m=0

(
m
j

)(
n−m
k−j

)
=
(
n+1
k+1

)
∑n
m=0

(
m
k

)
=
(
n+1
k+1

) ∑bn2 c
k=0

(
n−k
k

)
= F (n+ 1)∑m

j=0

(
m
j

)2
=
(
2m
m

) ∑n
i=0 i

(
n
i

)2
= n

2

(
2n
n

)∑n
i=0 i

2
(
n
i

)2
= n2

(
2n−2
n−1

) ∑n
k=q

(
n
k

)(
k
q

)
= 2n−q

(
n
q

)∑a
k=−a(−1)k

(
2a
k+a

)3
= (3a)!

a!3

a∑
k=−a

(−1)k
(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=

(a+ b+ c)!

a!b!c!

2.7 Series

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . , (−∞ < x <∞)

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . , (−1 < x ≤ 1)

√
1 + x = 1 +

x

2
− x2

8
+

2x3

32
− 5x4

128
+ . . . , (−1 ≤ x ≤ 1)

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . , (−∞ < x <∞)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . , (−∞ < x <∞)

2.8 Probability theory
Let X be a discrete random variable with probability pX(x) of
assuming the value x. It will then have an expected value (mean)
µ = E(X) =

∑
x xpX(x) and variance

σ2 = V (X) = E(X2)− (E(X))2 =
∑
x(x− E(X))2pX(x) where σ

is the standard deviation. If X is instead continuous it will have
a probability density function fX(x) and the sums above will
instead be integrals with pX(x) replaced by fX(x).

Expectation is linear:

E(aX + bY) = aE(X) + bE(Y)

For independent X and Y ,

V (aX + bY) = a2V (X) + b2V (Y).

2.8.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments,
each which yields success with probability p is
Bin(n, p), n = 1, 2, . . . , 0 ≤ p ≤ 1.

p(k) =

(
n

k

)
pk(1− p)n−k

µ = np, σ2 = np(1− p)

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in
independent yes/no experiments, each wich yields success with
probability p is Fs(p), 0 ≤ p ≤ 1.

p(k) = p(1− p)k−1, k = 1, 2, . . .

µ =
1

p
, σ2 =

1− p
p2

Poisson distribution

The number of events occurring in a fixed period of time t if these
events occur with a known average rate κ and independently of
the time since the last event is Po(λ), λ = tκ.

p(k) = e−λ
λk

k!
, k = 0, 1, 2, . . .

µ = λ, σ2 = λ

2.8.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b
and 0 elsewhere it is U(a, b), a < b.

f(x) =

{
1
b−a a < x < b

0 otherwise

µ =
a+ b

2
, σ2 =

(b− a)2

12

Exponential distribution

The time between events in a Poisson process is
Exp(λ), λ > 0.

f(x) =

{
λe−λx x ≥ 0

0 x < 0

µ =
1

λ
, σ2 =

1

λ2

Normal distribution

Most real random values with mean µ and variance σ2 are well
described by N (µ, σ2), σ > 0.

f(x) =
1√

2πσ2
e
− (x−µ)2

2σ2

If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) then

aX1 + bX2 + c ∼ N (µ1 + µ2 + c, a2σ2
1 + b2σ2

2)

Data structures (3)

OrderStatisticTree.h
Description: A set (not multiset!) with support for finding the n’th ele-
ment, and finding the index of an element. To get a map, change null type.
Time: O (logN)

782797, 16 lines

#include <bits/extc++.h>
using namespace __gnu_pbds;

template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,

tree_order_statistics_node_update>;

void example() {
Tree<int> t, t2; t.insert(8);
auto it = t.insert(10).first;
assert(it == t.lower_bound(9));
assert(t.order_of_key(10) == 1);
assert(t.order_of_key(11) == 2);
assert(*t.find_by_order(0) == 8);
t.join(t2); // assuming T < T2 or T > T2, merge t2 into t

}

HashMap.h
Description: Hash map with mostly the same API as unordered map, but
∼3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if
provided).

d77092, 7 lines

#include <bits/extc++.h>
// To use most bits rather than just the lowest ones :
struct chash { // large odd number for C
const uint64_t C = ll(4e18 * acos(0)) | 71;
ll operator()(ll x) const { return __builtin_bswap64(x*C); }

};
__gnu_pbds::gp_hash_table<ll,int,chash> h({},{},{},{},{1<<16});

UI: stack.py WaveletTree LiChaoTree UnionFind UnionFindRollback SubMatrix 3

WaveletTree.h
Description: Tree that recursively partitions a sequence into subsequences
by value. σ is the difference between the largest and smallest element in the
sequence (pre-compress values if σ is large). Use with a bump allocator for
better performance.
Usage: auto [lo, hi] = minmax element(all(A));
Node tr(A, *lo, (*hi)+1);
Time: O (log σ). Space: O (N log σ).

71870e, 35 lines

struct Node {
Node *l = 0, *r = 0;
int lo, hi; vi C; // C[i] = # of f i r s t i elements going l e f t
Node(const vi& A, int lo, int hi) : lo(lo), hi(hi), C(1, 0) {
if(lo + 1 == hi) return;
int mid = (lo + hi) / 2;
vi L, R;
for(int a: A) {
C.push_back(C.back());
if(a < mid) L.push_back(a), C.back()++;
else R.push_back(a);

}
l = new Node(L, lo, mid), r = new Node(R, mid, hi);

}
// k ’ th (0−indexed) element in the sorted range [L, R)
int quantile(int k, int L, int R) {
if(lo + 1 == hi) return lo;
int c = C[R] - C[L];
if(k < c) return l->quantile(k, C[L], C[R]);
return r->quantile(k - c, L - C[L], R - C[R]);

}
// number of elements in range [0 , R) equal to x
int rank(int x, int R) {
if(lo + 1 == hi) return R;
if(x < l->hi) return l->rank(x, C[R]);
return r->rank(x, R - C[R]);

}
// number of elements x in range [L, R) st . a <= x < b
int rectangle(int a, int b, int L, int R) {

if(a <= lo && hi <= b) return R - L;
if(a >= hi || b <= lo) return 0;
return l->rectangle(a, b, C[L], C[R]) +
r->rectangle(a, b, L - C[L], R - C[R]);

}
};

LiChaoTree.h
Description: Jago

06b342, 90 lines

template<typename data_t>
struct Line {
data_t a, b;
Line() : a(0), b(-inf) {}
Line(data_t a, data_t b) : a(a), b(b) {}
data_t get(data_t x) {
return a * x + b;

}
void add(Line x) {
a += x.a;
b += x.b;

}
};
struct Node {
Line<data_t> line = Line<data_t>();
Line<data_t> lazy = Line<data_t>(0, 0);
Node *lc = nullptr, *rc = nullptr;
void apply(data_t l, data_t r, Line<data_t> v) {
line.add(v); lazy.add(v);

}
};
void PushLazy(Node* &n, data_t tl, data_t tr) {

if (n == nullptr) return;
if (n->lc == nullptr) n->lc = new Node();
if (n->rc == nullptr) n->rc = new Node();
data_t mid = (tl + tr) / 2;
n->lc->apply(tl, mid, n->lazy);
n->rc->apply(mid + 1, tr, n->lazy);
n->lazy = Line<data_t>(0, 0);

}
void PushLine(Node* &n, data_t tl, data_t tr) {

if (n == nullptr) return;
data_t mid = (tl + tr) / 2;
InsertLineKnowingly(n->lc, tl, mid, n->line);
InsertLineKnowingly(n->rc, mid + 1, tr, n->line);
n->line = Line<data_t>();

}
void InsertLineKnowingly(Node* &n, data_t tl, data_t tr, Line<

data_t> x) {
if (n == nullptr) n = new Node();
if (n->line.get(tl) < x.get(tl)) swap(n->line, x);
if (n->line.get(tr) >= x.get(tr)) return;
if (tl == tr) return;
data_t mid = (tl + tr) / 2;
PushLazy(n, tl, tr);
if (n->line.get(mid) > x.get(mid)) {
InsertLineKnowingly(n->rc, mid + 1, tr, x);

} else {
swap(n->line, x);
InsertLineKnowingly(n->lc, tl, mid, x);

}
}
void InsertLine(Node* &n, data_t tl, data_t tr, data_t l,

data_t r, Line<data_t> x) {
if (tr < l || r < tl || tl > tr || l > r) return;
if (n == nullptr) n = new Node();
if (l <= tl && tr <= r) return InsertLineKnowingly(n, tl, tr,

x);
data_t mid = (tl + tr) / 2;
PushLazy(n, tl, tr);
InsertLine(n->lc, tl, mid, l, r, x);
InsertLine(n->rc, mid + 1, tr, l, r, x);

}
void AddLine(Node* &n, data_t tl, data_t tr, data_t l, data_t r

, Line<data_t> x) {
if (tr < l || r < tl || tl > tr || l > r) return;
if (n == nullptr) n = new Node();
if (l <= tl && tr <= r) return n->apply(tl, tr, x);
data_t mid = (tl + tr) / 2;
PushLazy(n, tl, tr); PushLine(n, tl, tr);
AddLine(n->lc, tl, mid, l, r, x);
AddLine(n->rc, mid + 1, tr, l, r, x);

}
data_t Query(Node* &n, data_t tl, data_t tr, data_t x) {

if (n == nullptr) return -inf;
if (tl == tr) return n->line.get(x);
data_t res = n->line.get(x);
data_t mid = (tl + tr) / 2;
PushLazy(n, tl, tr);
if (x <= mid)

res = max(res, Query(n->lc, tl, mid, x));
else
res = max(res, Query(n->rc, mid + 1, tr, x));

return res;
}
void InsertLine(data_t l, data_t r, Line<data_t> x) {

return InsertLine(root, 0, sz - 1, l, r, x);
}
void AddLine(data_t l, data_t r, Line<data_t> x) {

return AddLine(root, 0, sz - 1, l, r, x);
}

data_t Query(data_t x) {
return Query(root, 0, sz - 1, x);

}

UnionFind.h
Description: Disjoint-set data structure.
Time: O (α(N))

7aa27c, 14 lines

struct UF {
vi e;
UF(int n) : e(n, -1) {}
bool sameSet(int a, int b) { return find(a) == find(b); }
int size(int x) { return -e[find(x)]; }
int find(int x) { return e[x] < 0 ? x : e[x] = find(e[x]); }
bool join(int a, int b) {
a = find(a), b = find(b);
if (a == b) return false;
if (e[a] > e[b]) swap(a, b);
e[a] += e[b]; e[b] = a;
return true;

}
};

UnionFindRollback.h
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: O (log(N))

de4ad0, 21 lines

struct RollbackUF {
vi e; vector<pii> st;
RollbackUF(int n) : e(n, -1) {}
int size(int x) { return -e[find(x)]; }
int find(int x) { return e[x] < 0 ? x : find(e[x]); }
int time() { return sz(st); }
void rollback(int t) {
for (int i = time(); i --> t;)
e[st[i].first] = st[i].second;

st.resize(t);
}
bool join(int a, int b) {
a = find(a), b = find(b);
if (a == b) return false;
if (e[a] > e[b]) swap(a, b);
st.push_back({a, e[a]});
st.push_back({b, e[b]});
e[a] += e[b]; e[b] = a;
return true;

}
};

SubMatrix.h
Description: Calculate submatrix sums quickly, given upper-left and lower-
right corners (half-open).
Usage: SubMatrix<int> m(matrix);
m.sum(0, 0, 2, 2); // top left 4 elements
Time: O

(
N2 +Q

)
c59ada, 13 lines

template<class T>
struct SubMatrix {

vector<vector<T>> p;
SubMatrix(vector<vector<T>>& v) {
int R = sz(v), C = sz(v[0]);
p.assign(R+1, vector<T>(C+1));
rep(r,0,R) rep(c,0,C)
p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];

}
T sum(int u, int l, int d, int r) {
return p[d][r] - p[d][l] - p[u][r] + p[u][l];

UI: stack.py Matrix LineContainer Treap FenwickTree FenwickTree2d RMQ 4

}
};

Matrix.h
Description: Basic operations on square matrices.
Usage: Matrix<int, 3> A;
A.d = {{{{1,2,3}}, {{4,5,6}}, {{7,8,9}}}};
vector<int> vec = {1,2,3};
vec = (Â N) * vec;

c43c7d, 26 lines

template<class T, int N> struct Matrix {
typedef Matrix M;
array<array<T, N>, N> d{};
M operator*(const M& m) const {
M a;
rep(i,0,N) rep(j,0,N)
rep(k,0,N) a.d[i][j] += d[i][k]*m.d[k][j];

return a;
}
vector<T> operator*(const vector<T>& vec) const {
vector<T> ret(N);
rep(i,0,N) rep(j,0,N) ret[i] += d[i][j] * vec[j];
return ret;

}
M operator^(ll p) const {
assert(p >= 0);
M a, b(*this);
rep(i,0,N) a.d[i][i] = 1;
while (p) {
if (p&1) a = a*b;
b = b*b;
p >>= 1;

}
return a;

}
};

LineContainer.h
Description: Container where you can add lines of the form kx+m, and
query maximum values at points x. Useful for dynamic programming (“con-
vex hull trick”).
Time: O (logN)

8ec1c7, 30 lines

struct Line {
mutable ll k, m, p;
bool operator<(const Line& o) const { return k < o.k; }
bool operator<(ll x) const { return p < x; }

};

struct LineContainer : multiset<Line, less<>> {
// (for doubles , use inf = 1/.0, div(a,b) = a/b)
static const ll inf = LLONG_MAX;
ll div(ll a, ll b) { // floored division

return a / b - ((a ^ b) < 0 && a % b); }
bool isect(iterator x, iterator y) {
if (y == end()) return x->p = inf, 0;
if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
else x->p = div(y->m - x->m, x->k - y->k);
return x->p >= y->p;

}
void add(ll k, ll m) {
auto z = insert({k, m, 0}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
isect(x, erase(y));

}
ll query(ll x) {
assert(!empty());

auto l = *lower_bound(x);
return l.k * x + l.m;

}
};

Treap.h
Description: A short self-balancing tree. It acts as a sequential container
with log-time splits/joins, and is easy to augment with additional data.
Time: O (logN)

9556fc, 55 lines

struct Node {
Node *l = 0, *r = 0;
int val, y, c = 1;
Node(int val) : val(val), y(rand()) {}
void recalc();

};

int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(l) + cnt(r) + 1; }

template<class F> void each(Node* n, F f) {
if (n) { each(n->l, f); f(n->val); each(n->r, f); }

}

pair<Node*, Node*> split(Node* n, int k) {
if (!n) return {};
if (cnt(n->l) >= k) { // ”n−>val >= k” for lower bound(k)

auto pa = split(n->l, k);
n->l = pa.second;
n->recalc();
return {pa.first, n};

} else {
auto pa = split(n->r, k - cnt(n->l) - 1); // and just ”k”
n->r = pa.first;
n->recalc();
return {n, pa.second};

}
}

Node* merge(Node* l, Node* r) {
if (!l) return r;
if (!r) return l;
if (l->y > r->y) {
l->r = merge(l->r, r);
l->recalc();
return l;

} else {
r->l = merge(l, r->l);
r->recalc();
return r;

}
}

Node* ins(Node* t, Node* n, int pos) {
auto pa = split(t, pos);
return merge(merge(pa.first, n), pa.second);

}

// Example application : move the range [l , r) to index k
void move(Node*& t, int l, int r, int k) {
Node *a, *b, *c;
tie(a,b) = split(t, l); tie(b,c) = split(b, r - l);
if (k <= l) t = merge(ins(a, b, k), c);
else t = merge(a, ins(c, b, k - r));

}

FenwickTree.h
Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and
updates single elements a[i], taking the difference between the old and new
value.
Time: Both operations are O (logN).

e62fac, 22 lines

struct FT {
vector<ll> s;
FT(int n) : s(n) {}
void update(int pos, ll dif) { // a[pos] += dif
for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;

}
ll query(int pos) { // sum of values in [0 , pos)

ll res = 0;
for (; pos > 0; pos &= pos - 1) res += s[pos-1];
return res;

}
int lower_bound(ll sum) {// min pos st sum of [0 , pos] >= sum

// Returns n i f no sum is >= sum, or −1 i f empty sum is .
if (sum <= 0) return -1;
int pos = 0;
for (int pw = 1 << 25; pw; pw >>= 1) {
if (pos + pw <= sz(s) && s[pos + pw-1] < sum)
pos += pw, sum -= s[pos-1];

}
return pos;

}
};

FenwickTree2d.h
Description: Computes sums a[i,j] for all i<I, j<J, and increases single ele-
ments a[i,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
Time: O

(
log2N

)
. (Use persistent segment trees for O (logN).)

"FenwickTree.h" 157f07, 22 lines

struct FT2 {
vector<vi> ys; vector<FT> ft;
FT2(int limx) : ys(limx) {}
void fakeUpdate(int x, int y) {
for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);

}
void init() {
for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));

}
int ind(int x, int y) {
return (int)(lower_bound(all(ys[x]), y) - ys[x].begin()); }

void update(int x, int y, ll dif) {
for (; x < sz(ys); x |= x + 1)
ft[x].update(ind(x, y), dif);

}
ll query(int x, int y) {
ll sum = 0;
for (; x; x &= x - 1)
sum += ft[x-1].query(ind(x-1, y));

return sum;
}

};

RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V[a
+ 1], ... V[b - 1]) in constant time.
Usage: RMQ rmq(values);
rmq.query(inclusive, exclusive);
Time: O (|V | log |V |+Q)

510c32, 16 lines

template<class T>
struct RMQ {

vector<vector<T>> jmp;
RMQ(const vector<T>& V) : jmp(1, V) {

UI: stack.py MoQueries PolyBase PolyInverse PolyMod PolyIntegDeriv PolyLogExp PolyPow 5

for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
jmp.emplace_back(sz(V) - pw * 2 + 1);
rep(j,0,sz(jmp[k]))
jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);

}
}
T query(int a, int b) {

assert(a < b); // or return inf i f a == b
int dep = 31 - __builtin_clz(b - a);
return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);

}
};

MoQueries.h
Description: Answer interval or tree path queries by finding an approxi-
mate TSP through the queries, and moving from one query to the next by
adding/removing points at the ends. If values are on tree edges, change step
to add/remove the edge (a, c) and remove the initial add call (but keep in).
Time: O

(
N
√
Q
)

a12ef4, 49 lines

void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer

vi mo(vector<pii> Q) {
int L = 0, R = 0, blk = 350; // ∼N/sqrt (Q)
vi s(sz(Q)), res = s;

#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
iota(all(s), 0);
sort(all(s), [&](int s, int t){ return K(Q[s]) < K(Q[t]); });
for (int qi : s) {
pii q = Q[qi];
while (L > q.first) add(--L, 0);
while (R < q.second) add(R++, 1);
while (L < q.first) del(L++, 0);
while (R > q.second) del(--R, 1);
res[qi] = calc();

}
return res;

}

vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0){
int N = sz(ed), pos[2] = {}, blk = 350; // ∼N/sqrt (Q)
vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
add(0, 0), in[0] = 1;
auto dfs = [&](int x, int p, int dep, auto& f) -> void {
par[x] = p;
L[x] = N;
if (dep) I[x] = N++;
for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
if (!dep) I[x] = N++;
R[x] = N;

};
dfs(root, -1, 0, dfs);

#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
iota(all(s), 0);
sort(all(s), [&](int s, int t){ return K(Q[s]) < K(Q[t]); });
for (int qi : s) rep(end,0,2) {
int &a = pos[end], b = Q[qi][end], i = 0;

#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
else { add(c, end); in[c] = 1; } a = c; }

while (!(L[b] <= L[a] && R[a] <= R[b]))
I[i++] = b, b = par[b];

while (a != b) step(par[a]);
while (i--) step(I[i]);
if (end) res[qi] = calc();

}
return res;

}

Numerical (4)

4.1 Polynomials and recurrences
PolyBase.h
Description: A FFT based Polynomial class.
"../number-theory/ModularArithmetic.h", "FastFourierTransform.h",

"FastFourierTransformMod.h", "NumberTheoreticTransform.h" 499a15, 35 lines

typedef Mod num;
typedef vector<num> poly;
poly &operator+=(poly &a, const poly &b) {

a.resize(max(sz(a), sz(b)));
rep(i, 0, sz(b)) a[i] = a[i] + b[i];
return a;

}
poly &operator-=(poly &a, const poly &b) {

a.resize(max(sz(a), sz(b)));
rep(i, 0, sz(b)) a[i] = a[i] - b[i];
return a;

}

poly &operator*=(poly &a, const poly &b) {
if (sz(a) + sz(b) < 100){
poly res(sz(a) + sz(b) - 1);
rep(i,0,sz(a)) rep(j,0,sz(b))
res[i + j] = (res[i + j] + a[i] * b[j]);

return (a = res);
}
// auto res = convMod<mod>(vl (a l l (a)) , vl (a l l (b))) ;
auto res = conv(vl(all(a)), vl(all(b)));
return (a = poly(all(res)));

}
poly operator*(poly a, const num b) {

poly c = a;
trav(i, c) i = i * b;
return c;

}
#define OP(o, oe) \

poly operator o(poly a, poly b) { \
poly c = a; \
return c o##= b; \

}
OP(*, *=) OP(+, +=) OP(-, -=);

PolyInverse.h
Description: A FFT based Polynomial class.
"PolyBase.h" 703c16, 7 lines

poly modK(poly a, int k) { return {a.begin(), a.begin() + min(k
, sz(a))}; }

poly inverse(poly A) {
poly B = poly({num(1) / A[0]});
while (sz(B) < sz(A))
B = modK(B * (poly({num(2)}) - modK(A, 2*sz(B)) * B), 2 *

sz(B));
return modK(B, sz(A));

}

PolyMod.h
Description: A FFT based Polynomial class.
"PolyBase.h", "PolyInverse.h" 264551, 20 lines

poly &operator/=(poly &a, poly b) {
if (sz(a) < sz(b))

return a = {};
int s = sz(a) - sz(b) + 1;
reverse(all(a)), reverse(all(b));
a.resize(s), b.resize(s);
a = a * inverse(b);
a.resize(s), reverse(all(a));

return a;
}
OP(/, /=)
poly &operator%=(poly &a, poly &b) {

if (sz(a) < sz(b))
return a;

poly c = (a / b) * b;
a.resize(sz(b) - 1);
rep(i, 0, sz(a)) a[i] = a[i] - c[i];
return a;

}
OP(%, %=)

PolyIntegDeriv.h
Description: A FFT based Polynomial class.
"PolyBase.h" 803fd5, 14 lines

poly deriv(poly a) {
if (a.empty()) return {};
poly b(sz(a) - 1);
rep(i, 1, sz(a)) b[i - 1] = a[i] * num(i);
return b;

}
poly integr(poly a) {

if (a.empty()) return {0};
poly b(sz(a) + 1);
b[1] = num(1);
rep(i, 2, sz(b)) b[i] = b[mod%i]*Mod(-mod/i+mod);
rep(i, 1 ,sz(b)) b[i] = a[i-1] * b[i];
return b;

}

PolyLogExp.h
Description: A FFT based Polynomial class.
"PolyBase.h", "PolyInverse.h", "PolyIntegDeriv.h" 83ea75, 14 lines

poly log(poly a) {
return modK(integr(deriv(a) * inverse(a)), sz(a));

}
poly exp(poly a) {

poly b(1, num(1));
if (a.empty())
return b;

while (sz(b) < sz(a)) {
b.resize(sz(b) * 2);
b *= (poly({num(1)}) + modK(a, sz(b)) - log(b));
b.resize(sz(b) / 2 + 1);

}
return modK(b, sz(a));

}

PolyPow.h
Description: A FFT based Polynomial class.
"PolyBase.h", "PolyLogExp.h" f0005c, 13 lines

poly pow(poly a, ll m) {
int p = 0, n = sz(a);
while (p < sz(a) && a[p].v == 0)

++p;
if (ll(m)*p >= sz(a)) return poly(sz(a));
num j = a[p];
a = {a.begin() + p, a.end()};
a = a * (num(1) / j);
a.resize(n);
auto res = exp(log(a) * num(m)) * (j ^ m);
res.insert(res.begin(), p*m, 0);
return {res.begin(), res.begin()+n};

}

UI: stack.py PolyInterpolate PolyEvaluate PolyRoots BerlekampMassey LinearRecurrence InterpolateFast Simplex 6

PolyInterpolate.h
Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial

p that passes through them: p(x) = a[0] ∗ x0 + ...+ a[n− 1] ∗ xn−1.
Time: O

(
n log2 n

)
"PolyBase.h", "PolyIntegDeriv.h", "PolyEvaluate.h" b911f5, 11 lines

poly interp(vector<num> x, vector<num> y) {
int n=sz(x);
vector<poly> up(n*2);
rep(i,0,n) up[i+n] = poly({num(0)-x[i], num(1)});
for(int i=n-1; i>0;i--) up[i] = up[2*i]*up[2*i+1];
vector<num> a = eval(deriv(up[1]), x);
vector<poly> down(2*n);
rep(i,0,n) down[i+n] = poly({y[i]*(num(1)/a[i])});
for(int i=n-1;i>0;i--) down[i] = down[i*2] * up[i*2+1] + down

[i*2+1] * up[i*2];
return down[1];

}

PolyEvaluate.h
Description: Multi-point evaluation. Evaluates a given polynomial A at
A(x0), ...A(xn).
Time: O

(
n log2 n

)
"PolyBase.h", "PolyMod.h" dc2cdf, 14 lines

vector<num> eval(const poly &a, const vector<num> &x) {
int n = sz(x);
if (!n) return {};
vector<poly> up(2 * n);
rep(i, 0, n) up[i + n] = poly({num(0) - x[i], 1});
for (int i = n - 1; i > 0; i--)
up[i] = up[2 * i] * up[2 * i + 1];

vector<poly> down(2 * n);
down[1] = a % up[1];
rep(i, 2, 2 * n) down[i] = down[i / 2] % up[i];
vector<num> y(n);
rep(i, 0, n) y[i] = down[i + n][0];
return y;

}

PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots({{2,-3,1}},-1e9,1e9) // solve x̂ 2-3x+2 = 0
Time: O

(
n2 log(1/ε)

)
"Polynomial.h" b00bfe, 23 lines

vector<double> polyRoots(Poly p, double xmin, double xmax) {
if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
vector<double> ret;
Poly der = p;
der.diff();
auto dr = polyRoots(der, xmin, xmax);
dr.push_back(xmin-1);
dr.push_back(xmax+1);
sort(all(dr));
rep(i,0,sz(dr)-1) {
double l = dr[i], h = dr[i+1];
bool sign = p(l) > 0;
if (sign ^ (p(h) > 0)) {
rep(it,0,60) { // while (h − l > 1e−8)
double m = (l + h) / 2, f = p(m);
if ((f <= 0) ^ sign) l = m;
else h = m;

}
ret.push_back((l + h) / 2);

}
}
return ret;

}

BerlekampMassey.h
Description: Recovers any n-order linear recurrence relation from the first
2n terms of the recurrence. Useful for guessing linear recurrences after brute-
forcing the first terms. Should work on any field, but numerical stability for
floats is not guaranteed. Output will have size ≤ n.
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: O

(
N2
)

"../number-theory/ModPow.h" 96548b, 20 lines

vector<ll> berlekampMassey(vector<ll> s) {
int n = sz(s), L = 0, m = 0;
vector<ll> C(n), B(n), T;
C[0] = B[0] = 1;

ll b = 1;
rep(i,0,n) { ++m;

ll d = s[i] % mod;
rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
if (!d) continue;
T = C; ll coef = d * modpow(b, mod-2) % mod;
rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
if (2 * L > i) continue;
L = i + 1 - L; B = T; b = d; m = 0;

}

C.resize(L + 1); C.erase(C.begin());
for (ll& x : C) x = (mod - x) % mod;
return C;

}

LinearRecurrence.h
Description: Generates the k’th term of an n-order linear recurrence
S[i] =

∑
j S[i− j − 1]tr[j], given S[0 . . . ≥ n− 1] and tr[0 . . . n− 1]. Faster

than matrix multiplication. Useful together with Berlekamp–Massey.
Usage: linearRec({0, 1}, {1, 1}, k) // k’th Fibonacci number
Time: O

(
n2 log k

)
f4e444, 26 lines

typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {

int n = sz(tr);

auto combine = [&](Poly a, Poly b) {
Poly res(n * 2 + 1);
rep(i,0,n+1) rep(j,0,n+1)
res[i + j] = (res[i + j] + a[i] * b[j]) % mod;

for (int i = 2 * n; i > n; --i) rep(j,0,n)
res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;

res.resize(n + 1);
return res;

};

Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;

for (++k; k; k /= 2) {
if (k % 2) pol = combine(pol, e);
e = combine(e, e);

}

ll res = 0;
rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
return res;

}

InterpolateFast.h
Description: Find the value of

∑n
i=1 i

k modulo 109 + 7.
Time: O (n)

d31fca, 33 lines

int interpolate(int x, int k, bool bf = false) {
if (k == 0) return x;

// find 1^k + 2^k + . . . + x^k
// (k+1) degree polynomial −> (k+2) points
if (x <= k + 1 || bf) {
int s = 0;
for (int i = 1; i <= x; i ++) {
s = (s + qpow(i, k)) % mod;

}
return s;

}
vector<int> pre(k + 2), suf(k + 2), inv(k + 2);
inv[0] = 1;
pre[0] = x;
suf[k + 1] = x - (k + 1);
for (int i = 1; i <= k; i ++) pre[i] = pre[i - 1] * (x - i) %

mod; //numerator prefix product
for (int i = k; i >= 1; i --) suf[i] = suf[i + 1] * (x - i) %

mod; //numerator suff ix product
for (int i = 1; i <= k + 1; i ++) inv[i] = inv[i - 1] * rv(i)

% mod; // denominator factorial
int ans = 0;
int yi = 0; // 0^k +∼ i^k
int num, denom;
for (int i = 0; i <= k + 1; i ++) {

yi = (yi + qpow(i, k)) % mod; // interpolate point : (i , yi)
if (i == 0) num = suf[1];
else if (i == k + 1) num = pre[k];
else num = pre[i - 1] * suf[i + 1] % mod; // numerator
denom = inv[i] * inv[k + 1 - i] % mod; // denominator
if ((i + k) & 1) ans += (yi * num % mod) * denom % mod; //

(−1)^(i−deg) however deg is k+1 here so :)
else ans -= (yi * num % mod) * denom % mod;
ans = (ans % mod + mod) % mod;

}
return ans;

}

4.2 Optimization
Simplex.h
Description: Solves a general linear maximization problem: maximize cT x
subject to Ax ≤ b, x ≥ 0. Returns -inf if there is no solution, inf if there
are arbitrarily good solutions, or the maximum value of cT x otherwise. The
input vector is set to an optimal x (or in the unbounded case, an arbitrary
solution fulfilling the constraints). Numerical stability is not guaranteed. For
better performance, define variables such that x = 0 is viable.
Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
Time: O (NM ∗#pivots), where a pivot may be e.g. an edge relaxation.
O (2n) in the general case.

aa8530, 68 lines

typedef double T; // long double , Rational , double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;

const T eps = 1e-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j

struct LPSolver {
int m, n;
vi N, B;
vvd D;

LPSolver(const vvd& A, const vd& b, const vd& c) :
m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
rep(i,0,m) rep(j,0,n) D[i][j] = A[i][j];
rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
rep(j,0,n) { N[j] = j; D[m][j] = -c[j]; }
N[n] = -1; D[m+1][n] = 1;

UI: stack.py Determinant IntDeterminant SolveLinear SolveLinear2 SolveLinearBinary MatrixInverse 7

}

void pivot(int r, int s) {
T *a = D[r].data(), inv = 1 / a[s];
rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
T *b = D[i].data(), inv2 = b[s] * inv;
rep(j,0,n+2) b[j] -= a[j] * inv2;
b[s] = a[s] * inv2;

}
rep(j,0,n+2) if (j != s) D[r][j] *= inv;
rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
D[r][s] = inv;
swap(B[r], N[s]);

}

bool simplex(int phase) {
int x = m + phase - 1;
for (;;) {
int s = -1;
rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
if (D[x][s] >= -eps) return true;
int r = -1;
rep(i,0,m) {
if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])

< MP(D[r][n+1] / D[r][s], B[r])) r = i;
}
if (r == -1) return false;
pivot(r, s);

}
}

T solve(vd &x) {
int r = 0;
rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
if (D[r][n+1] < -eps) {
pivot(r, n);
if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;
rep(i,0,m) if (B[i] == -1) {

int s = 0;
rep(j,1,n+1) ltj(D[i]);
pivot(i, s);

}
}
bool ok = simplex(1); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;

}
};

4.3 Matrices
Determinant.h
Description: Calculates determinant of a matrix. Destroys the matrix.
Time: O

(
N3
)

bd5cec, 15 lines

double det(vector<vector<double>>& a) {
int n = sz(a); double res = 1;
rep(i,0,n) {
int b = i;
rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
if (i != b) swap(a[i], a[b]), res *= -1;
res *= a[i][i];
if (res == 0) return 0;
rep(j,i+1,n) {
double v = a[j][i] / a[i][i];
if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];

}
}
return res;

}

IntDeterminant.h
Description: Calculates determinant using modular arithmetics. Modulos
can also be removed to get a pure-integer version.
Time: O

(
N3
)

3313dc, 18 lines

const ll mod = 12345;
ll det(vector<vector<ll>>& a) {

int n = sz(a); ll ans = 1;
rep(i,0,n) {
rep(j,i+1,n) {
while (a[j][i] != 0) { // gcd step
ll t = a[i][i] / a[j][i];
if (t) rep(k,i,n)

a[i][k] = (a[i][k] - a[j][k] * t) % mod;
swap(a[i], a[j]);
ans *= -1;

}
}
ans = ans * a[i][i] % mod;
if (!ans) return 0;

}
return (ans + mod) % mod;

}

SolveLinear.h
Description: Solves A ∗ x = b. If there are multiple solutions, an arbitrary
one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.
Time: O

(
n2m

)
44c9ab, 38 lines

typedef vector<double> vd;
const double eps = 1e-12;

int solveLinear(vector<vd>& A, vd& b, vd& x) {
int n = sz(A), m = sz(x), rank = 0, br, bc;
if (n) assert(sz(A[0]) == m);
vi col(m); iota(all(col), 0);

rep(i,0,n) {
double v, bv = 0;
rep(r,i,n) rep(c,i,m)
if ((v = fabs(A[r][c])) > bv)

br = r, bc = c, bv = v;
if (bv <= eps) {
rep(j,i,n) if (fabs(b[j]) > eps) return -1;
break;

}
swap(A[i], A[br]);
swap(b[i], b[br]);
swap(col[i], col[bc]);
rep(j,0,n) swap(A[j][i], A[j][bc]);
bv = 1/A[i][i];
rep(j,i+1,n) {
double fac = A[j][i] * bv;
b[j] -= fac * b[i];
rep(k,i+1,m) A[j][k] -= fac*A[i][k];

}
rank++;

}

x.assign(m, 0);
for (int i = rank; i--;) {
b[i] /= A[i][i];
x[col[i]] = b[i];
rep(j,0,i) b[j] -= A[j][i] * b[i];

}
return rank; // (multiple solutions i f rank < m)

}

SolveLinear2.h
Description: To get all uniquely determined values of x back from Solve-
Linear, make the following changes:
"SolveLinear.h" 08e495, 7 lines

rep(j,0,n) if (j != i) // instead of rep(j , i+1,n)
// . . . then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
x[col[i]] = b[i] / A[i][i];

fail:; }

SolveLinearBinary.h
Description: Solves Ax = b over F2. If there are multiple solutions, one is
returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.
Time: O

(
n2m

)
fa2d7a, 34 lines

typedef bitset<1000> bs;

int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
int n = sz(A), rank = 0, br;
assert(m <= sz(x));
vi col(m); iota(all(col), 0);
rep(i,0,n) {
for (br=i; br<n; ++br) if (A[br].any()) break;
if (br == n) {
rep(j,i,n) if(b[j]) return -1;
break;

}
int bc = (int)A[br]._Find_next(i-1);
swap(A[i], A[br]);
swap(b[i], b[br]);
swap(col[i], col[bc]);
rep(j,0,n) if (A[j][i] != A[j][bc]) {
A[j].flip(i); A[j].flip(bc);

}
rep(j,i+1,n) if (A[j][i]) {
b[j] ^= b[i];
A[j] ^= A[i];

}
rank++;

}

x = bs();
for (int i = rank; i--;) {
if (!b[i]) continue;
x[col[i]] = 1;
rep(j,0,i) b[j] ^= A[j][i];

}
return rank; // (multiple solutions i f rank < m)

}

MatrixInverse.h
Description: Invert matrix A. Returns rank; result is stored in A unless
singular (rank < n). Can easily be extended to prime moduli; for prime

powers, repeatedly set A−1 = A−1(2I −AA−1) (mod pk) where A−1 starts
as the inverse of A mod p, and k is doubled in each step.
Time: O

(
n3
)

ebfff6, 35 lines

int matInv(vector<vector<double>>& A) {
int n = sz(A); vi col(n);
vector<vector<double>> tmp(n, vector<double>(n));
rep(i,0,n) tmp[i][i] = 1, col[i] = i;

rep(i,0,n) {
int r = i, c = i;
rep(j,i,n) rep(k,i,n)
if (fabs(A[j][k]) > fabs(A[r][c]))
r = j, c = k;

UI: stack.py MatrixInverse-mod FastFourierTransform FastFourierTransformMod NumberTheoreticTransform FastSubsetTransform 8

if (fabs(A[r][c]) < 1e-12) return i;
A[i].swap(A[r]); tmp[i].swap(tmp[r]);
rep(j,0,n)
swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);

swap(col[i], col[c]);
double v = A[i][i];
rep(j,i+1,n) {
double f = A[j][i] / v;
A[j][i] = 0;
rep(k,i+1,n) A[j][k] -= f*A[i][k];
rep(k,0,n) tmp[j][k] -= f*tmp[i][k];

}
rep(j,i+1,n) A[i][j] /= v;
rep(j,0,n) tmp[i][j] /= v;
A[i][i] = 1;

}

for (int i = n-1; i > 0; --i) rep(j,0,i) {
double v = A[j][i];
rep(k,0,n) tmp[j][k] -= v*tmp[i][k];

}

rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;

}

MatrixInverse-mod.h
Description: Invert matrix A modulo a prime. Returns rank; result is
stored in A unless singular (rank < n). For prime powers, repeatedly set

A−1 = A−1(2I−AA−1) (mod pk) where A−1 starts as the inverse of A mod
p, and k is doubled in each step.
Time: O

(
n3
)

"../number-theory/ModPow.h" a6f68f, 36 lines

int matInv(vector<vector<ll>>& A) {
int n = sz(A); vi col(n);
vector<vector<ll>> tmp(n, vector<ll>(n));
rep(i,0,n) tmp[i][i] = 1, col[i] = i;

rep(i,0,n) {
int r = i, c = i;
rep(j,i,n) rep(k,i,n) if (A[j][k]) {
r = j; c = k; goto found;

}
return i;

found:
A[i].swap(A[r]); tmp[i].swap(tmp[r]);
rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c

]);
swap(col[i], col[c]);
ll v = modpow(A[i][i], mod - 2);
rep(j,i+1,n) {
ll f = A[j][i] * v % mod;
A[j][i] = 0;
rep(k,i+1,n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;

}
rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
rep(j,0,n) tmp[i][j] = tmp[i][j] * v % mod;
A[i][i] = 1;

}

for (int i = n-1; i > 0; --i) rep(j,0,i) {
ll v = A[j][i];
rep(k,0,n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;

}

rep(i,0,n) rep(j,0,n)

A[col[i]][col[j]] = tmp[i][j] % mod + (tmp[i][j] < 0 ? mod
: 0);

return n;
}

4.4 Fourier transforms
FastFourierTransform.h
Description: fft(a) computes f̂(k) =

∑
x a[x] exp(2πi · kx/N) for all k.

N must be a power of 2. Useful for convolution: conv(a, b) = c, where
c[x] =

∑
a[i]b[x− i]. For convolution of complex numbers or more than two

vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT
back. Rounding is safe if (

∑
a2i +

∑
b2i) log2N < 9 · 1014 (in practice 1016;

higher for random inputs). Otherwise, use NTT/FFTMod.
Time: O (N logN) with N = |A|+ |B| (∼1s for N = 222)

97da51, 36 lines

typedef complex<double> C;
typedef complex<long double> Cd;
typedef vector<double> vd;
void fft(vector<C>& a) {
int n = sz(a), L = 31 - __builtin_clz(n);
static vector<complex<long double>> R(2, 1);
static vector<C> rt(2, 1); // (^ 10% faster i f double)
for (static int k = 2; k < n; k *= 2) {
R.resize(n); rt.resize(n);
auto x = polar(1.0L, acos(-1.0L) / k);
rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];

}
vi rev(n);
rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)
for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
C z = rt[j+k] * a[i+j+k]; // (25% faster i f hand−rolled)
a[i + j + k] = a[i + j] - z;
a[i + j] += z;

}
}
vd conv(const vd& a, const vd& b) {

if (a.empty() || b.empty()) return {};
vd res(sz(a) + sz(b) - 1);
int L = 32 - __builtin_clz(sz(res)), n = 1 << L;
vector<C> in(n), out(n);
copy(all(a), begin(in));
rep(i,0,sz(b)) in[i].imag(b[i]);
fft(in);
for (C& x : in) x *= x;
rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]);
fft(out);
rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n);
return res;

}

FastFourierTransformMod.h
Description: Higher precision FFT, can be used for convolutions modulo
arbitrary integers as long as N log2N ·mod < 8.6 · 1014 (in practice 1016 or
higher). Inputs must be in [0,mod).
Time: O (N logN), where N = |A|+ |B| (twice as slow as NTT or FFT)
"FastFourierTransform.h" b82773, 22 lines

typedef vector<ll> vl;
template<int M> vl convMod(const vl &a, const vl &b) {

if (a.empty() || b.empty()) return {};
vl res(sz(a) + sz(b) - 1);
int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));
vector<C> L(n), R(n), outs(n), outl(n);
rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
fft(L), fft(R);
rep(i,0,n) {

int j = -i & (n - 1);
outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;

}
fft(outl), fft(outs);
rep(i,0,sz(res)) {
ll av = ll(real(outl[i])+.5), cv = ll(imag(outs[i])+.5);
ll bv = ll(imag(outl[i])+.5) + ll(real(outs[i])+.5);
res[i] = ((av % M * cut + bv) % M * cut + cv) % M;

}
return res;

}

NumberTheoreticTransform.h
Description: ntt(a) computes f̂(k) =

∑
x a[x]gxk for all k, where g =

root(mod−1)/N . N must be a power of 2. Useful for convolution modulo spe-
cific nice primes of the form 2ab + 1, where the convolution result has size
at most 2a. For arbitrary modulo, see FFTMod. conv(a, b) = c, where
c[x] =

∑
a[i]b[x − i]. For manual convolution: NTT the inputs, multiply

pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in
[0, mod).
Time: O (N logN)
"../number-theory/ModPow.h" ced03d, 33 lines

const ll mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e .g . 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root) . The last two are > 10^9.
typedef vector<ll> vl;
void ntt(vl &a) {

int n = sz(a), L = 31 - __builtin_clz(n);
static vl rt(2, 1);
for (static int k = 2, s = 2; k < n; k *= 2, s++) {
rt.resize(n);
ll z[] = {1, modpow(root, mod >> s)};
rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;

}
vi rev(n);
rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)

for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
a[i + j + k] = ai - z + (z > ai ? mod : 0);
ai += (ai + z >= mod ? z - mod : z);

}
}
vl conv(const vl &a, const vl &b) {

if (a.empty() || b.empty()) return {};
int s = sz(a) + sz(b) - 1, B = 32 - __builtin_clz(s), n = 1

<< B;
int inv = modpow(n, mod - 2);
vl L(a), R(b), out(n);
L.resize(n), R.resize(n);
ntt(L), ntt(R);
rep(i,0,n) out[-i & (n - 1)] = (ll)L[i] * R[i] % mod * inv %

mod;
ntt(out);
return {out.begin(), out.begin() + s};

}

FastSubsetTransform.h
Description: Transform to a basis with fast convolutions of the form

c[z] =
∑

z=x⊕y
a[x] · b[y], where ⊕ is one of AND, OR, XOR. The size

of a must be a power of two.
Time: O (N logN)

464cf3, 16 lines

void FST(vi& a, bool inv) {
for (int n = sz(a), step = 1; step < n; step *= 2) {
for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {

UI: stack.py ModularArithmetic ModInverse ModPow ModLog ModSum ModMulLL ModSqrt ShortLucas MillerRabin Factor 9

int &u = a[j], &v = a[j + step]; tie(u, v) =
inv ? pii(v - u, u) : pii(v, u + v); // AND
inv ? pii(v, u - v) : pii(u + v, u); // OR
pii(u + v, u - v); // XOR

}
}
if (inv) for (int& x : a) x /= sz(a); // XOR only

}
vi conv(vi a, vi b) {

FST(a, 0); FST(b, 0);
rep(i,0,sz(a)) a[i] *= b[i];
FST(a, 1); return a;

}

Number theory (5)

5.1 Modular arithmetic
ModularArithmetic.h
Description: Operators for modular arithmetic. You need to set mod to
some number first and then you can use the structure.

3318e2, 18 lines

const ll mod = 17; // change to something else
struct Mod {

ll v;
Mod() : v(0) {}
Mod(ll vv) : v(vv % mod) {}
Mod operator+(Mod b) { return Mod((v + b.v) % mod); }
Mod operator-(Mod b) { return Mod(v - b.v + mod); }
Mod operator*(Mod b) { return Mod(v * b.v); }
Mod operator/(Mod b) { return *this * invert(b); }
Mod invert(Mod a) { return a^(mod-2); }
Mod operator^(ll e) {
ll ans = 1, b = (*this).v;
for (; e; b = b * b % mod, e /= 2)
if (e & 1) ans = ans * b % mod;

return ans;
}
explicit operator ll() const { return v; }

};

ModInverse.h
Description: Pre-computation of modular inverses. Assumes LIM ≤ mod
and that mod is a prime.

6f684f, 3 lines

const ll mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;

ModPow.h
b83e45, 8 lines

const ll mod = 1000000007; // faster i f const

ll modpow(ll b, ll e) {
ll ans = 1;
for (; e; b = b * b % mod, e /= 2)

if (e & 1) ans = ans * b % mod;
return ans;

}

ModLog.h
Description: Returns the smallest x > 0 s.t. ax = b (mod m), or −1 if no
such x exists. modLog(a,1,m) can be used to calculate the order of a.
Time: O

(√
m
)

c040b8, 11 lines

ll modLog(ll a, ll b, ll m) {
ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
unordered_map<ll, ll> A;

while (j <= n && (e = f = e * a % m) != b % m)
A[e * b % m] = j++;

if (e == b % m) return j;
if (__gcd(m, e) == __gcd(m, b))

rep(i,2,n+2) if (A.count(e = e * f % m))
return n * i - A[e];

return -1;
}

ModSum.h
Description: Sums of mod’ed arithmetic progressions.
modsum(to, c, k, m) =

∑to−1
i=0 (ki+ c)%m. divsum is similar but for

floored division.
Time: log(m), with a large constant.

5c5bc5, 16 lines

typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
ull res = k / m * sumsq(to) + c / m * to;
k %= m; c %= m;
if (!k) return res;
ull to2 = (to * k + c) / m;
return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);

}

ll modsum(ull to, ll c, ll k, ll m) {
c = ((c % m) + m) % m;
k = ((k % m) + m) % m;
return to * c + k * sumsq(to) - m * divsum(to, c, k, m);

}

ModMulLL.h
Description: Calculate a·b mod c (or ab mod c) for 0 ≤ a, b ≤ c ≤ 7.2·1018.
Time: O (1) for modmul, O (log b) for modpow

bbbd8f, 11 lines

typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {

ll ret = a * b - M * ull(1.L / M * a * b);
return ret + M * (ret < 0) - M * (ret >= (ll)M);

}
ull modpow(ull b, ull e, ull mod) {

ull ans = 1;
for (; e; b = modmul(b, b, mod), e /= 2)
if (e & 1) ans = modmul(ans, b, mod);

return ans;
}

ModSqrt.h
Description: Tonelli-Shanks algorithm for modular square roots. Finds x
s.t. x2 = a (mod p) (−x gives the other solution).
Time: O

(
log2 p

)
worst case, O (log p) for most p

"ModPow.h" 19a793, 24 lines

ll sqrt(ll a, ll p) {
a %= p; if (a < 0) a += p;
if (a == 0) return 0;
assert(modpow(a, (p-1)/2, p) == 1); // else no solution
if (p % 4 == 3) return modpow(a, (p+1)/4, p);
// a^(n+3)/8 or 2^(n+3)/8 * 2^(n−1)/4 works i f p % 8 == 5
ll s = p - 1, n = 2;
int r = 0, m;
while (s % 2 == 0)
++r, s /= 2;

while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
ll x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
ll t = b;
for (m = 0; m < r && t != 1; ++m)

t = t * t % p;
if (m == 0) return x;
ll gs = modpow(g, 1LL << (r - m - 1), p);
g = gs * gs % p;
x = x * gs % p;
b = b * g % p;

}
}

ShortLucas.h
Description: Lucas’ thm: Let n,m be non-negative integers and p a prime.
Write n = nkp

k + ... + n1p + n0 and m = mkp
k + ... + m1p + m0. Then(n

m

)
≡
∏k
i=0

(ni
mi

)
(mod p). fact and invfact must hold pre-computed facto-

rials / inverse factorials, e.g. from ModInverse.h.
Time: O

(
logp n

)
81845f, 10 lines

ll chooseModP(ll n, ll m, int p, vi& fact, vi& invfact) {
ll c = 1;
while (n || m) {
ll a = n % p, b = m % p;
if (a < b) return 0;
c = c * fact[a] % p * invfact[b] % p * invfact[a - b] % p;
n /= p; m /= p;

}
return c;

}

5.2 Primality
MillerRabin.h
Description: Deterministic Miller-Rabin primality test. Guaranteed to
work for numbers up to 7 · 1018; for larger numbers, use Python and ex-
tend A randomly.
Time: 7 times the complexity of ab mod c.
"ModMulLL.h" 60dcd1, 12 lines

bool isPrime(ull n) {
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},

s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trai l ing zeroes

ull p = modpow(a%n, d, n), i = s;
while (p != 1 && p != n - 1 && a % n && i--)
p = modmul(p, p, n);

if (p != n-1 && i != s) return 0;
}
return 1;

}

Factor.h
Description: Pollard-rho randomized factorization algorithm. Returns
prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).
Time: O

(
n1/4

)
, less for numbers with small factors.

"ModMulLL.h", "MillerRabin.h" a33cf6, 18 lines

ull pollard(ull n) {
auto f = [n](ull x) { return modmul(x, x, n) + 1; };
ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
while (t++ % 40 || __gcd(prd, n) == 1) {
if (x == y) x = ++i, y = f(x);
if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
x = f(x), y = f(f(y));

}
return __gcd(prd, n);

}
vector<ull> factor(ull n) {

if (n == 1) return {};
if (isPrime(n)) return {n};
ull x = pollard(n);
auto l = factor(x), r = factor(n / x);

UI: stack.py euclid CRT phiFunction IntPerm multinomial 10

l.insert(l.end(), all(r));
return l;

}

5.3 Divisibility
euclid.h
Description: Finds two integers x and y, such that ax + by = gcd(a, b). If
you just need gcd, use the built in gcd instead. If a and b are coprime, then
x is the inverse of a (mod b).

33ba8f, 5 lines

ll euclid(ll a, ll b, ll &x, ll &y) {
if (!b) return x = 1, y = 0, a;
ll d = euclid(b, a % b, y, x);
return y -= a/b * x, d;

}

CRT.h
Description: Chinese Remainder Theorem.
crt(a, m, b, n) computes x such that x ≡ a (mod m), x ≡ b (mod n). If
|a| < m and |b| < n, x will obey 0 ≤ x < lcm(m,n). Assumes mn < 262.
Time: log(n)
"euclid.h" de6b24, 7 lines

ll crt(ll a, ll m, ll b, ll n) {
if (n > m) swap(a, b), swap(m, n);
ll x, y, g = euclid(m, n, x, y);
assert((a - b) % g == 0); // else no solution
x = (b - a) % n * x % n / g * m + a;
return x < 0 ? x + m/g*n : x;

}

5.3.1 Bézout’s identity
For a 6=, b 6= 0, then d = gcd(a, b) is the smallest positive integer
for which there are integer solutions to

ax+ by = d

If (x, y) is one solution, then all solutions are given by(
x+

kb

gcd(a, b)
, y − ka

gcd(a, b)

)
, k ∈ Z

phiFunction.h
Description: Euler’s φ function is defined as φ(n) := # of positive integers

≤ n that are coprime with n. φ(1) = 1, p prime ⇒ φ(pk) = (p − 1)pk−1,

m,n coprime ⇒ φ(mn) = φ(m)φ(n). If n = p
k1
1 p

k2
2 ...pkrr then φ(n) =

(p1 − 1)p
k1−1
1 ...(pr − 1)pkr−1

r . φ(n) = n ·
∏
p|n(1− 1/p).∑

d|n φ(d) = n,
∑

1≤k≤n,gcd(k,n)=1 k = nφ(n)/2, n > 1

Euler’s thm: a, n coprime ⇒ aφ(n) ≡ 1 (mod n).

Fermat’s little thm: p prime ⇒ ap−1 ≡ 1 (mod p) ∀a.
cf7d6d, 8 lines

const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
for (int i = 3; i < LIM; i += 2) if(phi[i] == i)

for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}

5.4 Pythagorean Triples
The Pythagorean triples are uniquely generated by

a = k · (m2 − n2), b = k · (2mn), c = k · (m2 + n2),

with m > n > 0, k > 0, m⊥n, and either m or n even.

5.5 Primes
p = 962592769 is such that 221 | p− 1, which may be useful. For
hashing use 970592641 (31-bit number), 31443539979727 (45-bit),
3006703054056749 (52-bit). There are 78498 primes less than
1 000 000.

Primitive roots exist modulo any prime power pa, except for
p = 2, a > 2, and there are φ(φ(pa)) many. For p = 2, a > 2, the
group Z×2a is instead isomorphic to Z2 × Z2a−2 .

5.6 Estimates∑
d|n d = O(n log log n).

The number of divisors of n is at most around 100 for n < 5e4,
500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.7 Mobius Function

µ(n) =


0 n is not square free

1 n has even number of prime factors

−1 n has odd number of prime factors

Mobius Inversion:

g(n) =
∑
d|n

f(d)⇔ f(n) =
∑
d|n

µ(d)g(n/d)

Other useful formulas/forms:∑
d|n µ(d) = [n = 1] (very useful)

g(n) =
∑
n|d f(d)⇔ f(n) =

∑
n|d µ(d/n)g(d)

g(n) =
∑

1≤m≤n f(
⌊
n
m

⌋
)⇔ f(n) =

∑
1≤m≤n µ(m)g(

⌊
n
m

⌋
)

Combinatorial (6)

6.1 Permutations
6.1.1 Factorial

n 1 2 3 4 5 6 7 8 9 10

n! 1 2 6 24 120 720 5040 40320 362880 3628800
n 11 12 13 14 15 16 17

n! 4.0e7 4.8e8 6.2e9 8.7e10 1.3e12 2.1e13 3.6e14
n 20 25 30 40 50 100 150 171

n! 2e18 2e25 3e32 8e47 3e64 9e157 6e262 >DBL MAX

IntPerm.h
Description: Permutation -> integer conversion. (Not order preserving.)
Integer -> permutation can use a lookup table.
Time: O (n)

044568, 6 lines

int permToInt(vi& v) {
int use = 0, i = 0, r = 0;
for(int x:v) r = r * ++i + __builtin_popcount(use & -(1<<x)),

use |= 1 << x; // (note : minus, not ∼!)
return r;

}

6.1.2 Cycles
Let gS(n) be the number of n-permutations whose cycle lengths
all belong to the set S. Then

∞∑
n=0

gS(n)
xn

n!
= exp

(∑
n∈S

xn

n

)

6.1.3 Derangements
Permutations of a set such that none of the elements appear in
their original position.

D(n) = (n−1)(D(n−1)+D(n−2)) = nD(n−1)+(−1)n =

⌊
n!

e

⌉
6.1.4 Burnside’s lemma
Given a group G of symmetries and a set X, the number of
elements of X up to symmetry equals

1

|G|
∑
g∈G

|Xg|,

where Xg are the elements fixed by g (g.x = x).

If f(n) counts “configurations” (of some sort) of length n, we can
ignore rotational symmetry using G = Zn to get

g(n) =
1

n

n−1∑
k=0

f(gcd(n, k)) =
1

n

∑
k|n

f(k)φ(n/k).

6.2 Partitions and subsets
6.2.1 Partition function
Number of ways of writing n as a sum of positive integers,
disregarding the order of the summands.

p(0) = 1, p(n) =
∑

k∈Z\{0}

(−1)k+1p(n− k(3k − 1)/2)

p(n) ∼ 0.145/n · exp(2.56
√
n)

n 0 1 2 3 4 5 6 7 8 9 20 50 100

p(n) 1 1 2 3 5 7 11 15 22 30 627 ∼2e5 ∼2e8

6.2.2 Lucas’ Theorem
Let n,m be non-negative integers and p a prime. Write
n = nkp

k + ...+ n1p+ n0 and m = mkp
k + ...+m1p+m0. Then(

n
m

)
≡
∏k
i=0

(
ni
mi

)
(mod p).

6.2.3 Binomials
multinomial.h
Description: Computes

(k1 + · · ·+ kn

k1, k2, . . . , kn

)
=

(
∑
ki)!

k1!k2!...kn!
.

a0a312, 6 lines

ll multinomial(vi& v) {
ll c = 1, m = v.empty() ? 1 : v[0];
rep(i,1,sz(v)) rep(j,0,v[i])

c = c * ++m / (j+1);
return c;

}

UI: stack.py BellmanFord MinCostMaxFlow 11

6.3 General purpose numbers
6.3.1 Bernoulli numbers
EGF of Bernoulli numbers is B(t) = t

et−1
(FFT-able).

B[0, . . .] = [1,− 1
2
, 1
6
, 0,− 1

30
, 0, 1

42
, . . .]

Sums of powers:

n∑
i=1

nm =
1

m+ 1

m∑
k=0

(m+ 1

k

)
Bk · (n+ 1)m+1−k

Euler-Maclaurin formula for infinite sums:
∞∑
i=m

f(i) =

∫ ∞
m

f(x)dx−
∞∑
k=1

Bk

k!
f (k−1)(m)

≈
∫ ∞
m

f(x)dx+
f(m)

2
−

f ′(m)

12
+

f ′′′(m)

720
+O(f (5)(m))

6.3.2 Stirling numbers of the first kind
Number of permutations on n items with k cycles.

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k), c(0, 0) = 1∑n
k=0 c(n, k)xk = x(x+ 1) . . . (x+ n− 1)

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1
c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, . . .

6.3.3 Eulerian numbers
Number of permutations π ∈ Sn in which exactly k elements are
greater than the previous element. k j:s s.t. π(j) > π(j + 1),
k + 1 j:s s.t. π(j) ≥ j, k j:s s.t. π(j) > j.

E(n, k) = (n− k)E(n− 1, k − 1) + (k + 1)E(n− 1, k)

E(n, 0) = E(n, n− 1) = 1

E(n, k) =

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n

6.3.4 Stirling numbers of the second kind
Partitions of n distinct elements into exactly k groups.

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

S(n, 1) = S(n, n) = 1

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn

6.3.5 Bell numbers
Total number of partitions of n distinct elements. B(n) =
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For p prime,

B(pm + n) ≡ mB(n) +B(n+ 1) (mod p)

6.3.6 Labeled unrooted trees
on n vertices: nn−2

on k existing trees of size ni: n1n2 · · ·nknk−2

with degrees di: (n− 2)!/((d1 − 1)! · · · (dn − 1)!)

6.3.7 Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−

(
2n

n+ 1

)
=

(2n)!

(n+ 1)!n!

C0 = 1, Cn+1 =
2(2n+ 1)

n+ 2
Cn, Cn+1 =

∑
CiCn−i

Cn = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

� sub-diagonal monotone paths in an n× n grid.
� strings with n pairs of parenthesis, correctly nested.
� binary trees with with n+ 1 leaves (0 or 2 children).
� ordered trees with n+ 1 vertices.
� ways a convex polygon with n+ 2 sides can be cut into

triangles by connecting vertices with straight lines.
� permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals
BellmanFord.h
Description: Calculates shortest paths from s in a graph that might have
negative edge weights. Unreachable nodes get dist = inf; nodes reachable
through negative-weight cycles get dist = -inf. Assumes V 2 max |wi| < ∼263.
Time: O (V E)

830a8f, 23 lines

const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };

void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
nodes[s].dist = 0;
sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });

int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
rep(i,0,lim) for (Ed ed : eds) {

Node cur = nodes[ed.a], &dest = nodes[ed.b];
if (abs(cur.dist) == inf) continue;
ll d = cur.dist + ed.w;
if (d < dest.dist) {
dest.prev = ed.a;
dest.dist = (i < lim-1 ? d : -inf);

}
}
rep(i,0,lim) for (Ed e : eds) {
if (nodes[e.a].dist == -inf)
nodes[e.b].dist = -inf;

}
}

7.2 Network flow
MinCostMaxFlow.h
Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double
edges are not. If costs can be negative, call setpi before maxflow, but note
that negative cost cycles are not supported. To obtain the actual flow, look
at positive values only.

Time: Approximately O
(
E2
)

fe85cc, 81 lines

#include <bits/extc++.h>

const ll INF = numeric_limits<ll>::max() / 4;
typedef vector<ll> VL;

struct MCMF {
int N;
vector<vi> ed, red;
vector<VL> cap, flow, cost;
vi seen;
VL dist, pi;
vector<pii> par;

MCMF(int N) :
N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
seen(N), dist(N), pi(N), par(N) {}

void addEdge(int from, int to, ll cap, ll cost) {
this->cap[from][to] = cap;
this->cost[from][to] = cost;
ed[from].push_back(to);
red[to].push_back(from);

}

void path(int s) {
fill(all(seen), 0);
fill(all(dist), INF);
dist[s] = 0; ll di;

__gnu_pbds::priority_queue<pair<ll, int>> q;
vector<decltype(q)::point_iterator> its(N);
q.push({0, s});

auto relax = [&](int i, ll cap, ll cost, int dir) {
ll val = di - pi[i] + cost;
if (cap && val < dist[i]) {
dist[i] = val;
par[i] = {s, dir};
if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
else q.modify(its[i], {-dist[i], i});

}
};

while (!q.empty()) {
s = q.top().second; q.pop();
seen[s] = 1; di = dist[s] + pi[s];
for (int i : ed[s]) if (!seen[i])
relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);

for (int i : red[s]) if (!seen[i])
relax(i, flow[i][s], -cost[i][s], 0);

}
rep(i,0,N) pi[i] = min(pi[i] + dist[i], INF);

}

pair<ll, ll> maxflow(int s, int t) {
ll totflow = 0, totcost = 0;
while (path(s), seen[t]) {
ll fl = INF;
for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)

fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
totflow += fl;
for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)

if (r) flow[p][x] += fl;
else flow[x][p] -= fl;

}
rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
return {totflow, totcost};

UI: stack.py EdmondsKarp Dinic MinCut GlobalMinCut GomoryHu DFSMatching Blossom 12

}

// If some costs can be negative , cal l this before maxflow:
void setpi(int s) { // (otherwise , leave this out)
fill(all(pi), INF); pi[s] = 0;
int it = N, ch = 1; ll v;
while (ch-- && it--)
rep(i,0,N) if (pi[i] != INF)
for (int to : ed[i]) if (cap[i][to])
if ((v = pi[i] + cost[i][to]) < pi[to])
pi[to] = v, ch = 1;

assert(it >= 0); // negative cost cycle
}

};

EdmondsKarp.h
Description: Flow algorithm with guaranteed complexity O(V E2). To get
edge flow values, compare capacities before and after, and take the positive
values only.

482fe0, 35 lines

template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
graph, int source, int sink) {

assert(source != sink);
T flow = 0;
vi par(sz(graph)), q = par;

for (;;) {
fill(all(par), -1);
par[source] = 0;
int ptr = 1;
q[0] = source;

rep(i,0,ptr) {
int x = q[i];
for (auto e : graph[x]) {
if (par[e.first] == -1 && e.second > 0) {
par[e.first] = x;
q[ptr++] = e.first;
if (e.first == sink) goto out;

}
}

}
return flow;

out:
T inc = numeric_limits<T>::max();
for (int y = sink; y != source; y = par[y])
inc = min(inc, graph[par[y]][y]);

flow += inc;
for (int y = sink; y != source; y = par[y]) {
int p = par[y];
if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
graph[y][p] += inc;

}
}

}

Dinic.h
Description: Flow algorithm with complexity O(V E logU) where U =

max |cap|. O(min(E1/2, V 2/3)E) if U = 1; O(
√
V E) for bipartite match-

ing.
d7f0f1, 42 lines

struct Dinic {
struct Edge {
int to, rev;
ll c, oc;
ll flow() { return max(oc - c, 0LL); } // i f you need flows

};
vi lvl, ptr, q;

vector<vector<Edge>> adj;
Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
void addEdge(int a, int b, ll c, ll rcap = 0) {
adj[a].push_back({b, sz(adj[b]), c, c});
adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});

}
ll dfs(int v, int t, ll f) {
if (v == t || !f) return f;
for (int& i = ptr[v]; i < sz(adj[v]); i++) {
Edge& e = adj[v][i];
if (lvl[e.to] == lvl[v] + 1)

if (ll p = dfs(e.to, t, min(f, e.c))) {
e.c -= p, adj[e.to][e.rev].c += p;
return p;

}
}
return 0;

}
ll calc(int s, int t) {
ll flow = 0; q[0] = s;
rep(L,0,31) do { // ’ int L=30’ maybe faster for random data
lvl = ptr = vi(sz(q));
int qi = 0, qe = lvl[s] = 1;
while (qi < qe && !lvl[t]) {
int v = q[qi++];
for (Edge e : adj[v])
if (!lvl[e.to] && e.c >> (30 - L))
q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;

}
while (ll p = dfs(s, t, LLONG_MAX)) flow += p;

} while (lvl[t]);
return flow;

}
bool leftOfMinCut(int a) { return lvl[a] != 0; }

};

MinCut.h
Description: After running max-flow, the left side of a min-cut from s to t
is given by all vertices reachable from s, only traversing edges with positive
residual capacity.

GlobalMinCut.h
Description: Find a global minimum cut in an undirected graph, as repre-
sented by an adjacency matrix.
Time: O

(
V 3
)

8b0e19, 21 lines

pair<int, vi> globalMinCut(vector<vi> mat) {
pair<int, vi> best = {INT_MAX, {}};
int n = sz(mat);
vector<vi> co(n);
rep(i,0,n) co[i] = {i};
rep(ph,1,n) {
vi w = mat[0];
size_t s = 0, t = 0;
rep(it,0,n-ph) { // O(V̂ 2) −> O(E log V) with prio . queue
w[t] = INT_MIN;
s = t, t = max_element(all(w)) - w.begin();
rep(i,0,n) w[i] += mat[t][i];

}
best = min(best, {w[t] - mat[t][t], co[t]});
co[s].insert(co[s].end(), all(co[t]));
rep(i,0,n) mat[s][i] += mat[t][i];
rep(i,0,n) mat[i][s] = mat[s][i];
mat[0][t] = INT_MIN;

}
return best;

}

GomoryHu.h
Description: Given a list of edges representing an undirected flow graph,
returns edges of the Gomory-Hu tree. The max flow between any pair of
vertices is given by minimum edge weight along the Gomory-Hu tree path.
Time: O (V) Flow Computations
"PushRelabel.h" 0418b3, 13 lines

typedef array<ll, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
vector<Edge> tree;
vi par(N);
rep(i,1,N) {
PushRelabel D(N); // Dinic also works
for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
tree.push_back({i, par[i], D.calc(i, par[i])});
rep(j,i+1,N)
if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;

}
return tree;

}

7.3 Matching
DFSMatching.h
Description: Simple bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoa[i]
will be the match for vertex i on the right side, or −1 if it’s not matched.
Usage: vi btoa(m, -1); dfsMatching(g, btoa);
Time: O (V E)

522b98, 22 lines

bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
if (btoa[j] == -1) return 1;
vis[j] = 1; int di = btoa[j];
for (int e : g[di])

if (!vis[e] && find(e, g, btoa, vis)) {
btoa[e] = di;
return 1;

}
return 0;

}
int dfsMatching(vector<vi>& g, vi& btoa) {

vi vis;
rep(i,0,sz(g)) {
vis.assign(sz(btoa), 0);
for (int j : g[i])
if (find(j, g, btoa, vis)) {

btoa[j] = i;
break;

}
}
return sz(btoa) - (int)count(all(btoa), -1);

}

Blossom.h
Description: Edmond’s Blossom general Matching, Best known time is
O(V 2

√
V) Use with care

Time: O
(
V 3
)

2d3db1, 55 lines

struct Edmonds {
int n, T;
vector<vi> edge;
vi mate, p, vis, base, toJoin;
Edmonds(int N) : n(N), T(0), edge(n), mate(n, -1), p(n), vis(

n), base(n) { }
void add(int a, int b) { edge[a].pb(b); edge[b].pb(a); }
int getBase(int i) { return base[i] == i ? i : (base[i] =

getBase(base[i])); }
void mark_path(int pos, int nx, int b, vi &path) {
for (; getBase(pos) != b; pos = p[nx]) {
p[pos] = nx, nx = mate[pos];

UI: stack.py WeightedMatching SCCTarjan Tarjan EulerWalk CycleOfLengthK 13

toJoin.pb(pos); toJoin.pb(nx);
if (!vis[nx]) vis[nx] = ++T, path.pb(nx);

}
}
bool go(int pos) {

for (int nx : edge[pos]) {
int b, bpos = getBase(pos), bnx = getBase(nx);
if (bpos == bnx) continue;
else if (vis[nx]) {
vi path; toJoin.clear();
if (vis[bnx] < vis[bpos]) mark_path(pos, nx, b = bnx,

path);
else mark_path(nx, pos, b = bpos, path);
for (int z : toJoin) base[getBase(z)] = b;
for (int z : path) if (go(z)) return 1;

} else if (p[nx] == -1) {
p[nx] = pos;
if (mate[nx] == -1) {
for (int y; nx != -1; nx = pos)
y = p[nx], pos = mate[y], mate[nx] = y, mate[y] =

nx;
return 1;

}
if (!vis[mate[nx]]) { vis[mate[nx]] = ++T; if (go(mate[

nx])) return 1; }
}

}
return 0;

}
void init_dfs() { rep(i, 0, n) vis[i] = 0, p[i] = -1, base[i]

= i; }
bool dfs(int root) {vis[root] = ++T; return go(root); }
void match() {
int ans = 0;
for (int pos = 0; pos < n; pos++) {
if (mate[pos] != -1) continue;
for (int nx : edge[pos]) {
if (mate[nx] == -1) {
mate[pos] = nx; mate[nx] = pos; ans++; break;

}
}

}
init_dfs();
rep(i, 0, n) if (mate[i] == -1 && dfs(i)) ans++, init_dfs()

;
cout << ans * 2 << endl;
rep(i, 0, n) if (i < mate[i])
cout << i + 1 << " " << mate[i] + 1 << " \n"[i == n - 1];

}
};

WeightedMatching.h
Description: Given a weighted bipartite graph, matches every node on the
left with a node on the right such that no nodes are in two matchings and the
sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost
for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is
matched with R[match[i]]. Negate costs for max cost. Requires N ≤M .
Time: O

(
N2M

)
1e0fe9, 31 lines

pair<int, vi> hungarian(const vector<vi> &a) {
if (a.empty()) return {0, {}};
int n = sz(a) + 1, m = sz(a[0]) + 1;
vi u(n), v(m), p(m), ans(n - 1);
rep(i,1,n) {
p[0] = i;
int j0 = 0; // add ”dummy” worker 0
vi dist(m, INT_MAX), pre(m, -1);
vector<bool> done(m + 1);
do { // dijkstra

done[j0] = true;
int i0 = p[j0], j1, delta = INT_MAX;
rep(j,1,m) if (!done[j]) {
auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
if (dist[j] < delta) delta = dist[j], j1 = j;

}
rep(j,0,m) {
if (done[j]) u[p[j]] += delta, v[j] -= delta;
else dist[j] -= delta;

}
j0 = j1;

} while (p[j0]);
while (j0) { // update alternating path
int j1 = pre[j0];
p[j0] = p[j1], j0 = j1;

}
}
rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost

}

7.4 DFS algorithms
SCCTarjan.h
Description: Finds strongly connected components in a directed graph. If
vertices u, v belong to the same component, we can reach u from v and vice
versa.
Usage: scc(graph, [&](vi& v) { ... }) visits all components
in reverse topological order. comp[i] holds the component
index of a node (a component only has edges to components with
lower index). ncomps will contain the number of components.
Time: O (E + V)

17ec58, 15 lines

void tarjan(LL pos) {
path.pb(pos); vis[pos] = 1; low[pos] = num[pos] = ++curtime;
for (int i = 0; i < edge[pos].size(); i++) {
LL nx = edge[pos][i];
if (!num[nx]) tarjan(nx);
if (vis[nx]) low[pos] = min(low[pos], low[nx]);

}
if (low[pos] == num[pos]) { // Push path .back() until equal

pos }
}

int main() {
for (int i = 1; i <= n; i++) {
if (num[i] == 0) tarjan(i);

}
}

Tarjan.h
Description: Finds AP and Bridge.
Time: O (E + V)

50f160, 23 lines

void tarjan(LL pos, LL par) {
low[pos] = num[pos] = ++dfscnt;
trav(nx, edge[pos]){
if (nx == par) continue;
if (!num[nx]) {
if (pos == curroot) curchild++;
tarjan(nx, pos);
if (low[nx] >= num[pos]) isArticulationPoint[pos] = 1;
// i f (low[nx] > num[pos]) isBridge [pos] [nx] = 1;
low[pos] = min(low[pos], low[nx]);

} else low[pos] = min(low[pos], num[nx]);
}

}

int main() {

for (int i = 1; i <= n; i++) {
if (num[i]) continue;
curroot = i;
curchild = 0;
tarjan(i, -1);
isArticulationPoint[i] = (curchild > 1);

}
}

EulerWalk.h
Description: Eulerian undirected/directed path/cycle algorithm. Input
should be a vector of (dest, global edge index), where for undirected graphs,
forward/backward edges have the same index. Returns a list of nodes in
the Eulerian path/cycle with src at both start and end, or empty list if no
cycle/path exists. To get edge indices back, add .second to s and ret.
Time: O (V + E)

780b64, 15 lines

vi eulerWalk(vector<vector<pii>>& gr, int nedges, int src=0) {
int n = sz(gr);
vi D(n), its(n), eu(nedges), ret, s = {src};
D[src]++; // to allow Euler paths , not just cycles
while (!s.empty()) {
int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
if (it == end){ ret.push_back(x); s.pop_back(); continue; }
tie(y, e) = gr[x][it++];
if (!eu[e]) {
D[x]--, D[y]++;
eu[e] = 1; s.push_back(y);

}}
for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
return {ret.rbegin(), ret.rend()};

}

7.5 Coloring
CycleOfLengthK.h
Description: Find cycle of length K = 3, 4;

Time: O (V log V) in planar graph, O
(
E3/2

)
in dense graph

9a5a9f, 28 lines

pll cycle(const vector<pair<int, int>> &edges) {
int n = 0, i;
for (auto [u, v] : edges) n = max({n, u, v});
++n;
vector d(n, 0), id(d), rk(d), cnt(d);
vector e(n, vector(0, 0)), lk(n, vector(0, 0));
for (auto [u, v] : edges) ++d[u], ++d[v];
iota(all(id), 0); sort(all(id), [&](int x, int y) { return d[

x] < d[y]; });
for (i = 0; i < n; i++) rk[id[i]] = i;
for (auto [u, v] : edges) {

if (rk[u] > rk[v]) swap(u, v);
e[u].push_back(v);
lk[u].push_back(v);
lk[v].push_back(u);

}
ll c3 = 0;
for (i = 0; i < n; i++) {
for (int u : e[i]) cnt[u] = 1;
for (int u : e[i]) for (int v : e[u]) c3 += cnt[v];
for (int u : e[i]) cnt[u] = 0;

}
ll c4 = 0;
for (i = 0; i < n; i++) {
for (int u : lk[i]) for (int v : e[u]) if (rk[v] > rk[i])

c4 += cnt[v]++;
for (int u : lk[i]) for (int v : e[u]) cnt[v] = 0;

}
return {c3, c4};

}

UI: stack.py EdgeColoring VertexColoring MaximalCliques MaximumClique MaximumIndependentSet LinkCutTree 14

EdgeColoring.h
Description: Given a simple, undirected graph with max degree D, com-
putes a (D + 1)-coloring of the edges such that no neighboring edges share
a color. (D-coloring is NP-hard, but can be done for bipartite graphs by
repeated matchings of max-degree nodes.)
Time: O (NM)

e210e2, 31 lines

vi edgeColoring(int N, vector<pii> eds) {
vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
for (pii e : eds) ++cc[e.first], ++cc[e.second];
int u, v, ncols = *max_element(all(cc)) + 1;
vector<vi> adj(N, vi(ncols, -1));
for (pii e : eds) {
tie(u, v) = e;
fan[0] = v;
loc.assign(ncols, 0);
int at = u, end = u, d, c = free[u], ind = 0, i = 0;
while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
loc[d] = ++ind, cc[ind] = d, fan[ind] = v;

cc[loc[d]] = c;
for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);

while (adj[fan[i]][d] != -1) {
int left = fan[i], right = fan[++i], e = cc[i];
adj[u][e] = left;
adj[left][e] = u;
adj[right][e] = -1;
free[right] = e;

}
adj[u][d] = fan[i];
adj[fan[i]][d] = u;
for (int y : {fan[0], u, end})
for (int& z = free[y] = 0; adj[y][z] != -1; z++);

}
rep(i,0,sz(eds))
for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];

return ret;
}

VertexColoring.h
Description: Calculates the chromatic number of an undirected graph.
Time: O (2.4422n)
"MaximalCliques.h" 011734, 17 lines

const int MAXN = 15;
int memo[1<<MAXN] = {0};
int aux(vector& eds, B nodes) {
auto k = nodes.to_ulong();
if (!nodes.any()) return 0;
if (memo[k]) return memo[k];
int r = MAXN;
cliques(eds, [&](B x) {
r = min(r, 1 + aux(eds, nodes & ∼x));

}, nodes);
return memo[k] = r;

}
int chromaticNumber(vector& eds) {
vector comp;
rep(i, 0, sz(eds)) comp.push_back((∼eds[i]).reset(i));
return aux(comp, (1 << sz(comp)) - 1);

}

7.6 Heuristics
MaximalCliques.h
Description: Runs a callback for all maximal cliques in a graph (given as a
symmetric bitset matrix; self-edges not allowed). Callback is given a bitset
representing the maximal clique.

Time: O
(

3n/3
)

, much faster for sparse graphs
b0d5b1, 12 lines

typedef bitset<128> B;
template<class F>
void cliques(vector& eds, F f, B P = ∼B(), B X={}, B R={}) {

if (!P.any()) { if (!X.any()) f(R); return; }
auto q = (P | X)._Find_first();
auto cands = P & ∼eds[q];
rep(i,0,sz(eds)) if (cands[i]) {
R[i] = 1;
cliques(eds, f, P & eds[i], X & eds[i], R);
R[i] = P[i] = 0; X[i] = 1;

}
}

MaximumClique.h
Description: Quickly finds a maximum clique of a graph (given as symmet-
ric bitset matrix; self-edges not allowed). Can be used to find a maximum
independent set by finding a clique of the complement graph.
Time: Runs in about 1s for n=155 and worst case random graphs (p=.90).
Runs faster for sparse graphs.

f7c0bc, 49 lines

typedef vector<bitset<200>> vb;
struct Maxclique {

double limit=0.025, pk=0;
struct Vertex { int i, d=0; };
typedef vector<Vertex> vv;
vb e;
vv V;
vector<vi> C;
vi qmax, q, S, old;
void init(vv& r) {
for (auto& v : r) v.d = 0;
for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
sort(all(r), [](auto a, auto b) { return a.d > b.d; });
int mxD = r[0].d;
rep(i,0,sz(r)) r[i].d = min(i, mxD) + 1;

}
void expand(vv& R, int lev = 1) {
S[lev] += S[lev - 1] - old[lev];
old[lev] = S[lev - 1];
while (sz(R)) {
if (sz(q) + R.back().d <= sz(qmax)) return;
q.push_back(R.back().i);
vv T;
for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
if (sz(T)) {
if (S[lev]++ / ++pk < limit) init(T);
int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
C[1].clear(), C[2].clear();
for (auto v : T) {

int k = 1;
auto f = [&](int i) { return e[v.i][i]; };
while (any_of(all(C[k]), f)) k++;
if (k > mxk) mxk = k, C[mxk + 1].clear();
if (k < mnk) T[j++].i = v.i;
C[k].push_back(v.i);

}
if (j > 0) T[j - 1].d = 0;
rep(k,mnk,mxk + 1) for (int i : C[k])
T[j].i = i, T[j++].d = k;

expand(T, lev + 1);
} else if (sz(q) > sz(qmax)) qmax = q;
q.pop_back(), R.pop_back();

}
}
vi maxClique() { init(V), expand(V); return qmax; }
Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {

rep(i,0,sz(e)) V.push_back({i});
}

};

MaximumIndependentSet.h
Description: To obtain a maximum independent set of a graph, find a max
clique of the complement. If the graph is bipartite, see MinimumVertexCover.

7.7 Trees
LinkCutTree.h
Description: Represents a forest of unrooted trees. You can add and re-
move edges (as long as the result is still a forest), and check whether two
nodes are in the same tree.
Time: All operations take amortized O (logN).

5909e2, 90 lines

struct Node { // Splay tree . Root ’s pp contains tree ’s parent .
Node *p = 0, *pp = 0, *c[2];
bool flip = 0;
Node() { c[0] = c[1] = 0; fix(); }
void fix() {
if (c[0]) c[0]->p = this;
if (c[1]) c[1]->p = this;
// (+ update sum of subtree elements etc . i f wanted)

}
void pushFlip() {
if (!flip) return;
flip = 0; swap(c[0], c[1]);
if (c[0]) c[0]->flip ^= 1;
if (c[1]) c[1]->flip ^= 1;

}
int up() { return p ? p->c[1] == this : -1; }
void rot(int i, int b) {
int h = i ^ b;
Node *x = c[i], *y = b == 2 ? x : x->c[h], *z = b ? y : x;
if ((y->p = p)) p->c[up()] = y;
c[i] = z->c[i ^ 1];
if (b < 2) {
x->c[h] = y->c[h ^ 1];
z->c[h ^ 1] = b ? x : this;

}
y->c[i ^ 1] = b ? this : x;
fix(); x->fix(); y->fix();
if (p) p->fix();
swap(pp, y->pp);

}
void splay() {
for (pushFlip(); p;) {
if (p->p) p->p->pushFlip();
p->pushFlip(); pushFlip();
int c1 = up(), c2 = p->up();
if (c2 == -1) p->rot(c1, 2);
else p->p->rot(c2, c1 != c2);

}
}
Node* first() {
pushFlip();
return c[0] ? c[0]->first() : (splay(), this);

}
};

struct LinkCut {
vector<Node> node;
LinkCut(int N) : node(N) {}

void link(int u, int v) { // add an edge (u, v)
assert(!connected(u, v));
makeRoot(&node[u]);
node[u].pp = &node[v];

}
void cut(int u, int v) { // remove an edge (u, v)

Node *x = &node[u], *top = &node[v];
makeRoot(top); x->splay();

UI: stack.py DirectedMST Point lineDistance SegmentDistance SegmentIntersection 15

assert(top == (x->pp ?: x->c[0]));
if (x->pp) x->pp = 0;
else {
x->c[0] = top->p = 0;
x->fix();

}
}
bool connected(int u, int v) { // are u, v in the same tree?

Node* nu = access(&node[u])->first();
return nu == access(&node[v])->first();

}
void makeRoot(Node* u) {
access(u);
u->splay();
if(u->c[0]) {
u->c[0]->p = 0;
u->c[0]->flip ^= 1;
u->c[0]->pp = u;
u->c[0] = 0;
u->fix();

}
}
Node* access(Node* u) {

u->splay();
while (Node* pp = u->pp) {
pp->splay(); u->pp = 0;
if (pp->c[1]) {
pp->c[1]->p = 0; pp->c[1]->pp = pp; }

pp->c[1] = u; pp->fix(); u = pp;
}
return u;

}
};

DirectedMST.h
Description: Finds a minimum spanning tree/arborescence of a directed
graph, given a root node. If no MST exists, returns -1.
Time: O (E log V)
"../data-structures/UnionFindRollback.h" 39e620, 60 lines

struct Edge { int a, b; ll w; };
struct Node {
Edge key;
Node *l, *r;
ll delta;
void prop() {
key.w += delta;
if (l) l->delta += delta;
if (r) r->delta += delta;
delta = 0;

}
Edge top() { prop(); return key; }

};
Node *merge(Node *a, Node *b) {
if (!a || !b) return a ?: b;
a->prop(), b->prop();
if (a->key.w > b->key.w) swap(a, b);
swap(a->l, (a->r = merge(b, a->r)));
return a;

}
void pop(Node*& a) { a->prop(); a = merge(a->l, a->r); }

pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
RollbackUF uf(n);
vector<Node*> heap(n);
for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
ll res = 0;
vi seen(n, -1), path(n), par(n);
seen[r] = r;
vector<Edge> Q(n), in(n, {-1,-1}), comp;

deque<tuple<int, int, vector<Edge>>> cycs;
rep(s,0,n) {
int u = s, qi = 0, w;
while (seen[u] < 0) {
if (!heap[u]) return {-1,{}};
Edge e = heap[u]->top();
heap[u]->delta -= e.w, pop(heap[u]);
Q[qi] = e, path[qi++] = u, seen[u] = s;
res += e.w, u = uf.find(e.a);
if (seen[u] == s) {
Node* cyc = 0;
int end = qi, time = uf.time();
do cyc = merge(cyc, heap[w = path[--qi]]);
while (uf.join(u, w));
u = uf.find(u), heap[u] = cyc, seen[u] = -1;
cycs.push_front({u, time, {&Q[qi], &Q[end]}});

}
}
rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];

}

for (auto& [u,t,comp] : cycs) { // restore sol (optional)
uf.rollback(t);
Edge inEdge = in[u];
for (auto& e : comp) in[uf.find(e.b)] = e;
in[uf.find(inEdge.b)] = inEdge;

}
rep(i,0,n) par[i] = in[i].a;
return {res, par};

}

7.8 Math
7.8.1 Number of Spanning Trees
Create an N ×N matrix mat, and for each edge a→ b ∈ G, do
mat[a][b]--, mat[b][b]++ (and mat[b][a]--,
mat[a][a]++ if G is undirected). Remove the ith row and
column and take the determinant; this yields the number of
directed spanning trees rooted at i (if G is undirected, remove
any row/column).

7.8.2 Erdős–Gallai theorem
A simple graph with node degrees d1 ≥ · · · ≥ dn exists iff
d1 + · · ·+ dn is even and for every k = 1 . . . n,

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(di, k).

Geometry (8)

8.1 Geometric primitives
Point.h
Description: Class to handle points in the plane. T can be e.g. double or
long long. (Avoid int.)

47ec0a, 28 lines

template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {

typedef Point P;
T x, y;
explicit Point(T x=0, T y=0) : x(x), y(y) {}
bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }

bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
P operator+(P p) const { return P(x+p.x, y+p.y); }
P operator-(P p) const { return P(x-p.x, y-p.y); }
P operator*(T d) const { return P(x*d, y*d); }
P operator/(T d) const { return P(x/d, y/d); }
T dot(P p) const { return x*p.x + y*p.y; }
T cross(P p) const { return x*p.y - y*p.x; }
T cross(P a, P b) const { return (a-*this).cross(b-*this); }
T dist2() const { return x*x + y*y; }
double dist() const { return sqrt((double)dist2()); }
// angle to x−axis in interval [−pi , pi]
double angle() const { return atan2(y, x); }
P unit() const { return *this/dist(); } // makes dist ()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated ’a ’ radians ccw around the origin
P rotate(double a) const {
return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }

friend ostream& operator<<(ostream& os, P p) {
return os << "(" << p.x << "," << p.y << ")"; }

};

lineDistance.h
Description:
Returns the signed distance between point p and the line con-
taining points a and b. Positive value on left side and negative
on right as seen from a towards b. a==b gives nan. P is sup-
posed to be Point<T> or Point3D<T> where T is e.g. double
or long long. It uses products in intermediate steps so watch
out for overflow if using int or long long. Using Point3D will
always give a non-negative distance. For Point3D, call .dist
on the result of the cross product.

e

s

res
p

"Point.h" f6bf6b, 4 lines

template<class P>
double lineDist(const P& a, const P& b, const P& p) {

return (double)(b-a).cross(p-a)/(b-a).dist();
}

SegmentDistance.h
Description:
Returns the shortest distance between point p and the line
segment from point s to e.

e

s

res
p

Usage: Point<double> a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
"Point.h" 5c88f4, 6 lines

typedef Point<double> P;
double segDist(P& s, P& e, P& p) {

if (s==e) return (p-s).dist();
auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
return ((p-s)*d-(e-s)*t).dist()/d;

}

SegmentIntersection.h
Description:
If a unique intersection point between the line segments going
from s1 to e1 and from s2 to e2 exists then it is returned.
If no intersection point exists an empty vector is returned.
If infinitely many exist a vector with 2 elements is returned,
containing the endpoints of the common line segment. The
wrong position will be returned if P is Point<ll> and the in-
tersection point does not have integer coordinates. Products
of three coordinates are used in intermediate steps so watch
out for overflow if using int or long long.

e1

s1

e2

s2
r1

Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;
"Point.h", "OnSegment.h" 9d57f2, 13 lines

template<class P> vector<P> segInter(P a, P b, P c, P d) {

UI: stack.py lineIntersection sideOf OnSegment linearTransformation LineProjectionReflection RotationalSwap RotationalSweep 16

auto oa = c.cross(d, a), ob = c.cross(d, b),
oc = a.cross(b, c), od = a.cross(b, d);

// Checks i f intersection is single non−endpoint point .
if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)

return {(a * ob - b * oa) / (ob - oa)};
set<P> s;
if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert(b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);
return {all(s)};

}

lineIntersection.h
Description:
If a unique intersection point of the lines going through s1,e1
and s2,e2 exists {1, point} is returned. If no intersection point
exists {0, (0,0)} is returned and if infinitely many exists {-1,
(0,0)} is returned. The wrong position will be returned if P
is Point<ll> and the intersection point does not have inte-
ger coordinates. Products of three coordinates are used in
intermediate steps so watch out for overflow if using int or ll.

e1
s1

e2

s2
r

Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;
"Point.h" a01f81, 8 lines

template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
auto d = (e1 - s1).cross(e2 - s2);
if (d == 0) // i f paral lel
return {-(s1.cross(e1, s2) == 0), P(0, 0)};

auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
return {1, (s1 * p + e1 * q) / d};

}

sideOf.h
Description: Returns where p is as seen from s towards e. 1/0/-1⇔ left/on
line/right. If the optional argument eps is given 0 is returned if p is within
distance eps from the line. P is supposed to be Point<T> where T is e.g.
double or long long. It uses products in intermediate steps so watch out for
overflow if using int or long long.
Usage: bool left = sideOf(p1,p2,q)==1;
"Point.h" 3af81c, 9 lines

template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }

template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
auto a = (e-s).cross(p-s);
double l = (e-s).dist()*eps;
return (a > l) - (a < -l);

}

OnSegment.h
Description: Returns true iff p lies on the line segment from s to e. Use
(segDist(s,e,p)<=epsilon) instead when using Point<double>.
"Point.h" c597e8, 3 lines

template<class P> bool onSegment(P s, P e, P p) {
return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;

}

linearTransformation.h
Description:

Apply the linear transformation (translation, rotation and
scaling) which takes line p0-p1 to line q0-q1 to point r.

p0

p1

q0

r

q1

res

"Point.h" 03a306, 6 lines

typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,

const P& q0, const P& q1, const P& r) {
P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();

}

LineProjectionReflection.h
Description: Projects point p onto line ab. Set refl=true to get reflection of
point p across line ab insted. The wrong point will be returned if P is an in-
teger point and the desired point doesn’t have integer coordinates. Products
of three coordinates are used in intermediate steps so watch out for overflow.
"Point.h" b5562d, 5 lines

template<class P>
P lineProj(P a, P b, P p, bool refl=false) {

P v = b - a;
return p - v.perp()*(1+refl)*v.cross(p-a)/v.dist2();

}

RotationalSwap.h
Description: Find whether exists triangle whose area is exactly S.

2478a0, 85 lines

struct point {
ll x, y;
point() {}
point(ll _x, ll _y) {
x = _x, y = _y;

}
};
ll cross(point a, point b) {

return a.x * b.y - a.y * b.x;
}
ll area(point p, point q, point r) {

return abs(cross(p, q) + cross(q, r) + cross(r, p));
}
struct seg {

int i, j;
point a, b, vec;
seg() {}
seg(int _i, int _j, point _a, point _b, point _vec) {

i = _i, j = _j, a = _a, b = _b, vec = _vec;
};

};
const int N = 2005;
ll n, s;
point arr[N];
bool cmp(point a, point b) {

if (a.y == b.y) return a.x < b.x;
return a.y < b.y;

}
bool cmp2(seg a, seg b) {

return cross(a.vec, b.vec) > 0;
}
vector<seg> segment;
int ranked[N], id[N];
int main() {

scanf("%lld %lld", &n, &s); s *= 2;
for (int i = 1; i <= n; i++) {
scanf("%lld %lld", &arr[i].x, &arr[i].y);

}
sort(arr + 1, arr + n + 1, cmp);
for (int i = 1; i <= n; i++) for (int j = 1; j < i; j++) {

segment.push_back(seg(i, j, arr[i], arr[j], point(arr[i].
x - arr[j].x, arr[i].y - arr[j].y)));

}
sort(segment.begin(), segment.end(), cmp2);
for (int i = 1; i <= n; i++) ranked[i] = id[i] = i;
for (auto cur : segment) {
int a = id[cur.j], b = id[cur.i];

int l = 1, r = a - 1;
while (l <= r) {
int mid = (l + r) >> 1;
ll hasil = area(arr[ranked[mid]], cur.a, cur.b);
if (hasil == s) {
printf("Yes\n");
printf("%lld %lld\n", arr[ranked[mid]].x, arr[ranked[

mid]].y);
printf("%lld %lld\n", cur.a.x, cur.a.y);
printf("%lld %lld\n", cur.b.x, cur.b.y);
return 0;

} else if (hasil < s) {
r = mid - 1;

} else {
l = mid + 1;

}
}
l = b + 1, r = n;
while (l <= r) {
int mid = (l + r) >> 1;
ll hasil = area(arr[ranked[mid]], cur.a, cur.b);
if (hasil == s) {
printf("Yes\n");
printf("%lld %lld\n", arr[ranked[mid]].x, arr[ranked[

mid]].y);
printf("%lld %lld\n", cur.a.x, cur.a.y);
printf("%lld %lld\n", cur.b.x, cur.b.y);
return 0;

} else if (hasil > s) {
r = mid - 1;

} else {
l = mid + 1;

}
}
assert(a + 1 == b);
swap(ranked[a], ranked[b]);
swap(id[cur.i], id[cur.j]);

}
printf("No\n");
return 0;

}

RotationalSweep.h
Description: Codechef blue red
Time: O

(
N2 logN

)
"Point.h" 67e3bc, 40 lines

template<class P>
P RotationalSweep(vector<P> &all) {

for (int i = 0; i < n; i++) {
vector <PP> kiri, kanan;
for (int j = 0; j < n; j++) {
PP curtmp = all[j];
curtmp.center = curtmp.center - all[i].center;
if (i == j) continue;
if (curtmp.center.y >= 0) kiri.pb(curtmp);
else kanan.pb(curtmp);

}
sort(kiri.begin(), kiri.end());
sort(kanan.begin(), kanan.end());
kiri.insert(kiri.end(), kanan.begin(), kanan.end());
LL cnt[2] = {0, 0};
LL N = kiri.size();
LL hi = 0;
cnt[kiri[0].color]++;
for (int j = 0; j < N; j++) {
do {
LL nx = (hi + 1) % N;
if (pivot.ccw(kiri[j].center, kiri[nx].center) <= 0)

break;

UI: stack.pyCircleIntersection CircleTangents CircleLine CirclePolygonIntersection circumcircle MinimumEnclosingCircle InsidePolygon PolygonArea PolygonCenter PolygonCut 17

cnt[kiri[nx].color]++;
hi = nx;

} while (1);
LL curcnt[2] = {initialColor[0] - cnt[0], initialColor[1]

- cnt[1]};
curcnt[all[i].color]--;
cnt[kiri[j].color]--;
ans = min(ans, cnt[0] + curcnt[1]);
ans = min(ans, cnt[1] + curcnt[0]);
cnt[kiri[j].color]++;
if (hi == j) {

LL nx = (hi + 1) % N;
cnt[kiri[nx].color]++;
hi = nx;

}
cnt[kiri[j].color]--;

}
}

}

8.2 Circles
CircleIntersection.h
Description: Computes the pair of points at which two circles intersect.
Returns false in case of no intersection.
"Point.h" 84d6d3, 11 lines

typedef Point<double> P;
bool circleInter(P a,P b,double r1,double r2,pair<P, P>* out) {
if (a == b) { assert(r1 != r2); return false; }
P vec = b - a;
double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,

p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
if (sum*sum < d2 || dif*dif > d2) return false;
P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);

*out = {mid + per, mid - per};
return true;

}

CircleTangents.h
Description: Finds the external tangents of two circles, or internal if r2 is
negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or
overlaps it, in the internal case, or if the circles are the same); 1 if the circles
are tangent to each other (in which case .first = .second and the tangent line
is perpendicular to the line between the centers). .first and .second give the
tangency points at circle 1 and 2 respectively. To find the tangents of a circle
with a point set r2 to 0.
"Point.h" b0153d, 13 lines

template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
P d = c2 - c1;
double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
if (d2 == 0 || h2 < 0) return {};
vector<pair<P, P>> out;
for (double sign : {-1, 1}) {
P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
out.push_back({c1 + v * r1, c2 + v * r2});

}
if (h2 == 0) out.pop_back();
return out;

}

CircleLine.h
Description: Finds the intersection between a circle and a line. Re-
turns a vector of either 0, 1, or 2 intersection points. P is intended to be
Point<double>.
"Point.h" e0cfba, 9 lines

template<class P>
vector<P> circleLine(P c, double r, P a, P b) {

P ab = b - a, p = a + ab * (c-a).dot(ab) / ab.dist2();
double s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();
if (h2 < 0) return {};
if (h2 == 0) return {p};
P h = ab.unit() * sqrt(h2);
return {p - h, p + h};

}

CirclePolygonIntersection.h
Description: Returns the area of the intersection of a circle with a ccw
polygon.
Time: O (n)
"../../content/geometry/Point.h" a1ee63, 19 lines

typedef Point<double> P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {

auto tri = [&](P p, P q) {
auto r2 = r * r / 2;
P d = q - p;
auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
auto det = a * a - b;
if (det <= 0) return arg(p, q) * r2;
auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
if (t < 0 || 1 <= s) return arg(p, q) * r2;
P u = p + d * s, v = p + d * t;
return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;

};
auto sum = 0.0;
rep(i,0,sz(ps))
sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);

return sum;
}

circumcircle.h
Description:

The circumcirle of a triangle is the circle intersecting all
three vertices. ccRadius returns the radius of the circle going
through points A, B and C and ccCenter returns the center
of the same circle.

B

C
A

r c

"Point.h" 1caa3a, 9 lines

typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {

return (B-A).dist()*(C-B).dist()*(A-C).dist()/
abs((B-A).cross(C-A))/2;

}
P ccCenter(const P& A, const P& B, const P& C) {

P b = C-A, c = B-A;
return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;

}

MinimumEnclosingCircle.h
Description: Computes the minimum circle that encloses a set of points.
Time: expected O (n)
"circumcircle.h" 09dd0a, 17 lines

pair<P, double> mec(vector<P> ps) {
shuffle(all(ps), mt19937(time(0)));
P o = ps[0];
double r = 0, EPS = 1 + 1e-8;
rep(i,0,sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
o = ps[i], r = 0;
rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
o = (ps[i] + ps[j]) / 2;
r = (o - ps[i]).dist();
rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
o = ccCenter(ps[i], ps[j], ps[k]);
r = (o - ps[i]).dist();

}

}
}
return {o, r};

}

8.3 Polygons
InsidePolygon.h
Description: Returns true if p lies within the polygon. If strict is true, it
returns false for points on the boundary. The algorithm uses products in
intermediate steps so watch out for overflow.
Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P{3, 3}, false);
Time: O (n)
"Point.h", "OnSegment.h", "SegmentDistance.h" 2bf504, 11 lines

template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {

int cnt = 0, n = sz(p);
rep(i,0,n) {
P q = p[(i + 1) % n];
if (onSegment(p[i], q, a)) return !strict;
//or : i f (segDist(p[i] , q , a) <= eps) return ! str ict ;
cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;

}
return cnt;

}

PolygonArea.h
Description: Returns twice the signed area of a polygon. Clockwise enu-
meration gives negative area. Watch out for overflow if using int as T!
"Point.h" f12300, 6 lines

template<class T>
T polygonArea2(vector<Point<T>>& v) {

T a = v.back().cross(v[0]);
rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
return a;

}

PolygonCenter.h
Description: Returns the center of mass for a polygon.
Time: O (n)
"Point.h" 9706dc, 9 lines

typedef Point<double> P;
P polygonCenter(const vector<P>& v) {

P res(0, 0); double A = 0;
for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {

res = res + (v[i] + v[j]) * v[j].cross(v[i]);
A += v[j].cross(v[i]);

}
return res / A / 3;

}

PolygonCut.h
Description:
Returns a vector with the vertices of a polygon with every-
thing to the left of the line going from s to e cut away.

s

e

Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h" f2b7d4, 13 lines

typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {

vector<P> res;
rep(i,0,sz(poly)) {
P cur = poly[i], prev = i ? poly[i-1] : poly.back();
bool side = s.cross(e, cur) < 0;
if (side != (s.cross(e, prev) < 0))
res.push_back(lineInter(s, e, cur, prev).second);

UI: stack.py PolygonUnion ConvexHull onionDecomposition 18

if (side)
res.push_back(cur);

}
return res;

}

PolygonUnion.h
Description: Calculates the area of the union of n polygons (not necessar-
ily convex). The points within each polygon must be given in CCW order.
(Epsilon checks may optionally be added to sideOf/sgn, but shouldn’t be
needed.)
Time: O

(
N2
)
, where N is the total number of points

"Point.h", "sideOf.h" 3931c6, 33 lines

typedef Point<double> P;
double rat(P a, P b) { return sgn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
double ret = 0;
rep(i,0,sz(poly)) rep(v,0,sz(poly[i])) {
P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
rep(j,0,sz(poly)) if (i != j) {
rep(u,0,sz(poly[j])) {
P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
if (sc != sd) {

double sa = C.cross(D, A), sb = C.cross(D, B);
if (min(sc, sd) < 0)
segs.emplace_back(sa / (sa - sb), sgn(sc - sd));

} else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
segs.emplace_back(rat(C - A, B - A), 1);
segs.emplace_back(rat(D - A, B - A), -1);

}
}

}
sort(all(segs));
for (auto& s : segs) s.first = min(max(s.first, 0.0), 1.0);
double sum = 0;
int cnt = segs[0].second;
rep(j,1,sz(segs)) {
if (!cnt) sum += segs[j].first - segs[j - 1].first;
cnt += segs[j].second;

}
ret += A.cross(B) * sum;

}
return ret / 2;

}

ConvexHull.h
Description:
Returns a vector of the points of the convex hull in counter-
clockwise order. Points on the edge of the hull between two
other points are not considered part of the hull.
Time: O (n logn)
"Point.h" 310954, 13 lines

typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
if (sz(pts) <= 1) return pts;
sort(all(pts));
vector<P> h(sz(pts)+1);
int s = 0, t = 0;
for (int it = 2; it--; s = --t, reverse(all(pts)))
for (P p : pts) {
while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
h[t++] = p;

}
return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};

}

onionDecomposition.h
Description: Online Dynamic Convex Hull
<bits/stdc++.h> 130a28, 190 lines

using namespace std;
using ll = int64_t;

// Decremental convex hull in O(n log n)
// From ”Applications of a semi−dynamic convex hull algorithm”

by J. Hershberger and S. Suri
struct Upper_Hull{

struct Link{
Point p;
Link *prev = nullptr, *next = nullptr;
int id;

};
struct Node{
Link *chain, *chain_back, *tangent;

};
template<typename S, typename T>
pair<Link*, Link*> find_bridge(Link*l, Link*r, S next, T

convex){
while(next(l) || next(r)){
if(!next(r) || (next(l) && convex(Point{0, 0}, next(l)->p

- l->p, next(r)->p - r->p))){
if(convex(l->p, next(l)->p, r->p)) l = next(l);
else break;

} else {
if(!convex(l->p, r->p, next(r)->p)) r = next(r);
else break;

}
}
return {l, r};

}
template<bool rev = false>
void fix_chain(int u, Link*l, Link*r){

if(rev){ // l and r to the right of actual bridge
tie(r, l) = find_bridge(r, l,
[](Link*x){ return x->prev; },
[](Point const&a, Point const&b, Point const&c){
return ccw(a, b, c) >= 0;

});
} else { // l and r to the l e f t of actual bridge

tie(l, r) = find_bridge(l, r,
[](Link*x){ return x->next; },
[](Point const&a, Point const&b, Point const&c){

return ccw(a, b, c) <= 0;
});

}
tree[u].tangent = l;
tree[u].chain = tree[2*u].chain;
tree[u].chain_back = tree[2*u+1].chain_back;
tree[2*u].chain = l->next;
tree[2*u+1].chain_back = r->prev;
if(l->next) l->next->prev = nullptr;
else tree[2*u].chain_back = nullptr;
if(r->prev) r->prev->next = nullptr;
else tree[2*u+1].chain = nullptr;
l->next = r; r->prev = l;

}
void build(int u, int a, int b){
if(b-a == 1){
tree[u].chain = tree[u].chain_back = &lists[a];
tree[u].tangent = nullptr;
return;

}
const int m = a + (b-a)/2;
build(2*u, a, m); build(2*u+1, m, b);
auto l = tree[2*u].chain, r = tree[2*u+1].chain;
fix_chain(u, l, r);

}

void rob(int u, int v){
tree[u].chain = tree[v].chain;
tree[v].chain = nullptr;
tree[u].chain_back = tree[v].chain_back;
tree[v].chain_back = nullptr;

}

void remove(int u, int a, int b, int const&i){
if(i < a || i >= b) return;
// we should never hit a leaf
assert(b-a > 1);
const int m = a + (b-a)/2;
// one child −> that child contains i
if(!tree[u].tangent){
int v = i<m ? 2*u : 2*u+1;
tree[v].chain = tree[u].chain;
tree[v].chain_back = tree[u].chain_back;
if(i < m) remove(2*u, a, m, i);
else remove(2*u+1, m, b, i);
rob(u, v);
return;

}
// restore hull of children
auto l = tree[u].tangent, r = l->next;
l->next = tree[2*u].chain;
if(tree[2*u].chain) tree[2*u].chain->prev = l;
else tree[2*u].chain_back = l;
tree[2*u].chain = tree[u].chain;
r->prev = tree[2*u+1].chain_back;
if(tree[2*u+1].chain_back)
tree[2*u+1].chain_back->next = r;

else tree[2*u+1].chain = r;
tree[2*u+1].chain_back = tree[u].chain_back;
// delete i
const int v = i<m ? 2*u : 2*u+1;
// only i
if(tree[v].chain == tree[v].chain_back && tree[v].chain->id

== i){
tree[v].chain = tree[v].chain_back = nullptr;
rob(u, v^1);
tree[u].tangent = nullptr;
return;

}
if(i < m){
if(l->id == i) l = l->next;
remove(2*u, a, m, i);
if(!l) l = tree[2*u].chain_back;
fix_chain<true>(u, l, r);

} else {
if(r->id == i) r = r->prev;
remove(2*u+1, m, b, i);
if(!r) r = tree[2*u+1].chain;
fix_chain<false>(u, l, r);

}
}
void remove(int i){

// i is the only point
if(tree[1].chain == tree[1].chain_back){
tree[1].chain = tree[1].chain_back = nullptr;
return;

}
remove(1, 0, n, i);

}
Upper_Hull(vector<Point> const&v) : n(v.size()), tree(4*n),

lists(n){
assert(is_sorted(v.begin(), v.end()));
for(int i=0; i<n; ++i){

UI: stack.py HullDiameter HalfPlane HalfplaneSet 19

lists[i].p = v[i];
lists[i].id = i;

}
build(1, 0, n);

}
vector<int> get_hull(){
vector<int> ret;
for(Link* u = tree[1].chain; u; u=u->next)
ret.push_back(u->id);

return ret;
}
vector<Point> get_hull_points(){
vector<Point> ret;
for(Link* u = tree[1].chain; u; u=u->next)
ret.push_back(u->p);

return ret;
}
int n;
vector<Node> tree;
vector<Link> lists;

};

// test code from https ://codeforces .com/blog/entry/75929
signed main(){
int N;
scanf("%d",&N);
vector<int> layer(N);
vector<int> ans(N);
vector<Point> ps;
map<Point,int> id;
for(int i=0;i<N;i++){
int X,Y;
scanf("%d %d",&X,&Y);
ps.push_back({X,Y});
id[{X,Y}]=i;

}
sort(ps.begin(),ps.end());
Upper_Hull left(ps);
reverse(ps.begin(),ps.end());
for(auto& p:ps) p=-p;
Upper_Hull right(ps);
for(auto& p:ps) p=-p;
reverse(ps.begin(),ps.end());
for(int l=1,cnt=0;cnt<N;l++){
set<int> hull;
for(int i:left.get_hull()) hull.insert(i);
for(int i:right.get_hull()) hull.insert(N-1-i);
for(int i:hull){
assert(!layer[i]);
cnt++;
layer[i]=l;
left.remove(i);
right.remove(N-1-i);

}
}
for(int i=0;i<N;i++) ans[id[ps[i]]]=layer[i];
for(int i=0;i<N;i++) printf("%d\n",ans[i]);
return 0;

}

HullDiameter.h
Description: Returns the two points with max distance on a convex hull
(ccw, no duplicate/collinear points).
Time: O (n)
"Point.h" c571b8, 12 lines

typedef Point<ll> P;
array<P, 2> hullDiameter(vector<P> S) {

int n = sz(S), j = n < 2 ? 0 : 1;
pair<ll, array<P, 2>> res({0, {S[0], S[0]}});

rep(i,0,j)
for (;; j = (j + 1) % n) {
res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)

break;
}

return res.second;
}

HalfPlane.h
Description: Computes the intersection of a set of half-planes. Input is
given as a set of planes, facing left. Output is the convex polygon represent-
ing the intersection. The points may have duplicates and be collinear. Will
not fail catastrophically if ‘eps > sqrt(2)(line intersection error)‘. Likely to
work for more ranges if 3 half planes are never guaranteed to intersect at the
same point.
Time: O (n logn)
"Point.h", "sideOf.h", "lineIntersection.h" eda44b, 31 lines

typedef Point<double> P;
typedef array<P, 2> Line;
#define sp(a) a[0], a[1]
#define ang(a) (a[1] - a[0]).angle()

int angDiff(Line a, Line b) { return sgn(ang(a) - ang(b)); }
bool cmp(Line a, Line b) {

int s = angDiff(a, b);
return (s ? s : sideOf(sp(a), b[0])) < 0;

}
vector<P> halfPlaneIntersection(vector<Line> vs) {

const double EPS = sqrt(2) * 1e-8;
sort(all(vs), cmp);
vector<Line> deq(sz(vs) + 5);
vector<P> ans(sz(vs) + 5);
deq[0] = vs[0];
int ah = 0, at = 0, n = sz(vs);
rep(i,1,n+1) {

if (i == n) vs.push_back(deq[ah]);
if (angDiff(vs[i], vs[i - 1]) == 0) continue;
while (ah<at && sideOf(sp(vs[i]), ans[at-1], EPS) < 0)
at--;

while (i!=n && ah<at && sideOf(sp(vs[i]),ans[ah],EPS)<0)
ah++;

auto res = lineInter(sp(vs[i]), sp(deq[at]));
if (res.first != 1) continue;
ans[at++] = res.second, deq[at] = vs[i];

}
if (at - ah <= 2) return {};
return {ans.begin() + ah, ans.begin() + at};

}

HalfplaneSet.h
Description: Data structure that dynamically keeps track of the intersec-
tion of halfplanes.
<bits/stdc++.h> ff9da9, 95 lines

using namespace std;
using T = int;
using T2 = long long;
using T4 = __int128_t;
const T2 INF = 2e9;
struct Line { T a, b; T2 c; };
bool operator<(Line m, Line n) {

auto half = [&](Line m) {
return m.b < 0 || m.b == 0 && m.a < 0; };

return make_tuple(half(m), (T2)m.b * n.a) <
make_tuple(half(n), (T2)m.a * n.b);

}
tuple<T4, T4, T2> LineIntersection(Line m, Line n) {

T2 d = (T2)m.a * n.b - (T2)m.b * n.a; // assert(d) ;

T4 x = (T4)m.c * n.b - (T4)m.b * n.c;
T4 y = (T4)m.a * n.c - (T4)m.c * n.a;
return {x, y, d};

}
Line LineFromPoints(T x1, T y1, T x2, T y2) {

T a = y1 - y2, b = x2 - x1;
T2 c = (T2)a * x1 + (T2)b * y1;
return {a, b, c};

}
ostream& operator<<(ostream& out, Line l) {

out << "(" << l.a << " * x + " << l.b << " * y <= " << l.c <<
")";

return out;
}
struct HalfplaneSet : multiset<Line> {

HalfplaneSet() {
insert({+1, 0, INF}); insert({0, +1, INF});
insert({-1, 0, INF}); insert({0, -1, INF});

};

auto prv(auto it) { return --(it == begin() ? end() : it); }
auto nxt(auto it) { return (++it == end() ? begin() : it); }
bool bad(auto it) {
auto l = *it, pl = *prv(it), nl = *nxt(it);
T4 x, y; T2 d; tie(x, y, d) = LineIntersection(pl, nl);
// auto [x , y , d] = LineIntersection(pl , nl) ;
T4 sat = l.a * x + l.b * y - (T4)l.c * d;
if (d < 0 && sat < 0) {
clear(); // infeasible

}
return d > 0 && sat <= 0 || d == 0 && sat < 0;

}
void Cut(Line l) { // add ax + by <= c
if (empty()) return;
auto it = insert(l);
if (bad(it)) { erase(it); return; }
while (size()) {
auto nit = nxt(it);
if (bad(nit)) erase(nit);
else break;

}
while (size()) {
auto pit = prv(it);
if (bad(pit)) erase(pit);
else break;

}
}
double Maximize(T a, T b) { // max ax + by
if (empty()) return -1/0.;
auto it = lower_bound({-b, a});
if (it == end()) it = begin();
// auto [x , y , d] = LineIntersection(*prv(i t) , * i t) ;
// return (1.0 * a * x + 1.0 * b * y) / d;

}
double Area() {
long double total = 0.;
for (auto it = begin(); it != end(); ++it) {
T4 x1, y1; T2 d1; tie(x1, y1, d1) = LineIntersection(*prv

(it), *it);
T4 x2, y2; T2 d2; tie(x2, y2, d2) = LineIntersection(*it,

*nxt(it));
// auto [x1 , y1, d1] = LineIntersection(*prv(i t) , * i t) ;
// auto [x2 , y2, d2] = LineIntersection(* it , *nxt(i t)) ;

total += (1.0L * x1/d1 * y2/d2 - 1.0L * x2/d2 * y1/d1);
}
return total * 0.5L;

}
};
int main() {

UI: stack.py PointInsideHull LineHullIntersection PolygonStab ClosestPair ManhattanMST kdTree 20

//ifstream cin(”camera. in”) ;
//ofstream cout(”camera.out”) ;
int t; cin >> t;
while (t--) {
int n; cin >> n;
vector<T> x(n), y(n);
for (int i = 0; i < n; ++i)
cin >> x[i] >> y[i];

HalfplaneSet HS;
for (int j = n - 1, i = 0; i < n; j = i++)
HS.Cut(LineFromPoints(x[j], y[j], x[i], y[i]));

cout << fixed << setprecision(6) << HS.Area() / 4e14 << ’\n
’;

}
return 0;

}

PointInsideHull.h
Description: Determine whether a point t lies inside a convex hull (CCW
order, with no collinear points). Returns true if point lies within the hull. If
strict is true, points on the boundary aren’t included.
Time: O (logN)
"Point.h", "sideOf.h", "OnSegment.h" 71446b, 14 lines

typedef Point<ll> P;

bool inHull(const vector<P>& l, P p, bool strict = true) {
int a = 1, b = sz(l) - 1, r = !strict;
if (sz(l) < 3) return r && onSegment(l[0], l.back(), p);
if (sideOf(l[0], l[a], l[b]) > 0) swap(a, b);
if (sideOf(l[0], l[a], p) >= r || sideOf(l[0], l[b], p)<= -r)

return false;
while (abs(a - b) > 1) {
int c = (a + b) / 2;
(sideOf(l[0], l[c], p) > 0 ? b : a) = c;

}
return sgn(l[a].cross(l[b], p)) < r;

}

LineHullIntersection.h
Description: Line-convex polygon intersection. The polygon must be ccw
and have no collinear points. lineHull(line, poly) returns a pair describing
the intersection of a line with the polygon: � (−1,−1) if no collision, � (i,−1)
if touching the corner i, � (i, i) if along side (i, i+ 1), � (i, j) if crossing sides
(i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated
as happening on side (i, i+ 1). The points are returned in the same order as
the line hits the polygon. extrVertex returns the point of a hull with the
max projection onto a line.
Time: O (logn)
"Point.h" 7cf45b, 39 lines

#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
int n = sz(poly), lo = 0, hi = n;
if (extr(0)) return 0;
while (lo + 1 < hi) {
int m = (lo + hi) / 2;
if (extr(m)) return m;
int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
(ls < ms || (ls == ms && ls == cmp(lo, m)) ? hi : lo) = m;

}
return lo;

}

#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
int endA = extrVertex(poly, (a - b).perp());
int endB = extrVertex(poly, (b - a).perp());

if (cmpL(endA) < 0 || cmpL(endB) > 0)
return {-1, -1};

array<int, 2> res;
rep(i,0,2) {
int lo = endB, hi = endA, n = sz(poly);
while ((lo + 1) % n != hi) {
int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
(cmpL(m) == cmpL(endB) ? lo : hi) = m;

}
res[i] = (lo + !cmpL(hi)) % n;
swap(endA, endB);

}
if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))

switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
case 0: return {res[0], res[0]};
case 2: return {res[1], res[1]};

}
return res;

}

PolygonStab.h
Description: Stab the polygon isi, with line a, b, find the longest segment
with valid stab
Time: O

(
N2 logN

)
"Point.h" 5aa689, 26 lines

P isi[1005];
template<class P>
P PolygonStab(P a, P b) {

vector<intersectPoint> all;
for (int k = 1; k <= n; k++) {
auto res = lineInter(a, b, isi[k], isi[k + 1 <= n ? k + 1 :

1]);
if (res.fi == 1 && onSegment(isi[k], isi[k + 1 <= n ? k + 1

: 1], res.se)) {
all.pb({res.se, {a.ccw(b, isi[k]), a.ccw(b, isi[k + 1 <=

n ? k + 1 : 1])}});
}

}
sort(all.begin(), all.end());
int isInside = -1, pre;
LD curAns = 0; P lst;
for (int k = 0; k < all.size(); k++) {
if (isInside >= 0) curAns += (all[k].fi - all[k - 1].fi).

dist();
if (all[k].se.fi * all[k].se.se == -1) isInside = -isInside

;
else if (isInside == 0) isInside = (all[k].se.fi + all[k].

se.se) * pre;
else {
pre = (all[k].se.fi + all[k].se.se) * isInside;
isInside = 0;

}
ans = doubleMax(ans, curAns);
if (isInside == -1) curAns = 0, lst = all[k + 1 <= (int)(

all.size()) - 1 ? k + 1 : 0].fi;
}
return curAns;

}

8.4 Misc. Point Set Problems
ClosestPair.h
Description: Finds the closest pair of points.
Time: O (n logn)
"Point.h" ac41a6, 17 lines

typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {

assert(sz(v) > 1);

set<P> S;
sort(all(v), [](P a, P b) { return a.y < b.y; });
pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
int j = 0;
for (P p : v) {
P d{1 + (ll)sqrt(ret.first), 0};
while (v[j].y <= p.y - d.x) S.erase(v[j++]);
auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
for (; lo != hi; ++lo)
ret = min(ret, {(*lo - p).dist2(), {*lo, p}});

S.insert(p);
}
return ret.second;

}

ManhattanMST.h
Description: Given N points, returns up to 4*N edges, which are guaran-
teed to contain a minimum spanning tree for the graph with edge weights
w(p, q) = —p.x - q.x— + —p.y - q.y—. Edges are in the form (distance,
src, dst). Use a standard MST algorithm on the result to find the final MST.
Time: O (N logN)
"Point.h" df6f59, 23 lines

typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {

vi id(sz(ps));
iota(all(id), 0);
vector<array<int, 3>> edges;
rep(k,0,4) {

sort(all(id), [&](int i, int j) {
return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});

map<int, int> sweep;
for (int i : id) {
for (auto it = sweep.lower_bound(-ps[i].y);

it != sweep.end(); sweep.erase(it++)) {
int j = it->second;
P d = ps[i] - ps[j];
if (d.y > d.x) break;
edges.push_back({d.y + d.x, i, j});

}
sweep[-ps[i].y] = i;

}
for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);

}
return edges;

}

kdTree.h
Description: KD-tree (any dimension)

1f90e6, 73 lines

using T = long long;
constexpr int DIM = 2;
using P = array<T, DIM>;
const T INF = numeric_limits<T>::max();

struct Node {
P pt; // i f this is a leaf , the single point in i t
P lo_bound, hi_bound;
Node *first = 0, *second = 0;

T distance(const P& p) { // min squared distance to a point
T r = 0;
rep(i, 0, DIM) {
T d = p[i] - max(lo_bound[i], min(hi_bound[i], p[i]));
r += d * d;

}
return r;

}

Node(vector<P>&& vp) : pt(vp[0]) {

UI: stack.py FastDelaunay PolyhedronVolume Point3D 3dHull 21

rep(i, 0, DIM) {
lo_bound[i] = INF; hi_bound[i] = -INF;

}
for (const P & p : vp) {
rep(i, 0, DIM) {
lo_bound[i] = min(lo_bound[i], p[i]);
hi_bound[i] = max(hi_bound[i], p[i]);

}
}
if (sz(vp) > 1) {

// sp l i t on x i f width >= height (not ideal . . .)
pair<T, int> biggest = { -1, -1};
rep(i, 0, DIM)
biggest = max(biggest, {hi_bound[i] - lo_bound[i], i});
int i = biggest.second;
sort(all(vp), [&](const P & a, const P & b) { return a[i]

< b[i]; });
// divide by taking half the array for each child (not
// best performance with many duplicates in the middle)
int half = sz(vp) / 2;
first = new Node({vp.begin(), vp.begin() + half});
second = new Node({vp.begin() + half, vp.end()});

}
}

};

struct KDTree {
Node* root;
KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}

pair<T, P> search(Node *node, const P& p) {
if (!node->first) {

// uncomment i f we should not find the point i t s e l f :
// i f (p == node−>pt) return {INF, P()};
return {node->distance(p), node->pt};

}

Node *f = node->first, *s = node->second;
T bfirst = f->distance(p), bsec = s->distance(p);
if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);

// search closest side f irst , other side i f needed
auto best = search(f, p);
if (bsec < best.first)
best = min(best, search(s, p));

return best;
}

// find nearest point to a point , and i ts squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest(const P& p) {
return search(root, p);

}
};

FastDelaunay.h
Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in ’circ’. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][0], . . . }, all counter-clockwise.
Time: O (n logn)
"Point.h" eefdf5, 88 lines

typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be l l i f coords are < 2e4)
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point

struct Quad {

Q rot, o; P p = arb; bool mark;
P& F() { return r()->p; }
Q& r() { return rot->rot; }
Q prev() { return rot->o->rot; }
Q next() { return r()->prev(); }

} *H;

bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
lll p2 = p.dist2(), A = a.dist2()-p2,

B = b.dist2()-p2, C = c.dist2()-p2;
return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;

}
Q makeEdge(P orig, P dest) {

Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
H = r->o; r->r()->r() = r;
rep(i,0,4) r = r->rot, r->p = arb, r->o = i & 1 ? r : r->r();
r->p = orig; r->F() = dest;
return r;

}
void splice(Q a, Q b) {

swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
}
Q connect(Q a, Q b) {

Q q = makeEdge(a->F(), b->p);
splice(q, a->next());
splice(q->r(), b);
return q;

}

pair<Q,Q> rec(const vector<P>& s) {
if (sz(s) <= 3) {
Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
if (sz(s) == 2) return { a, a->r() };
splice(a->r(), b);
auto side = s[0].cross(s[1], s[2]);
Q c = side ? connect(b, a) : 0;
return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };

}

#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)

Q A, B, ra, rb;
int half = sz(s) / 2;
tie(ra, A) = rec({all(s) - half});
tie(B, rb) = rec({sz(s) - half + all(s)});
while ((B->p.cross(H(A)) < 0 && (A = A->next())) ||

(A->p.cross(H(B)) > 0 && (B = B->r()->o)));
Q base = connect(B->r(), A);
if (A->p == ra->p) ra = base->r();
if (B->p == rb->p) rb = base;

#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
while (circ(e->dir->F(), H(base), e->F())) { \
Q t = e->dir; \
splice(e, e->prev()); \
splice(e->r(), e->r()->prev()); \
e->o = H; H = e; e = t; \

}
for (;;) {
DEL(LC, base->r(), o); DEL(RC, base, prev());
if (!valid(LC) && !valid(RC)) break;
if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
base = connect(RC, base->r());

else
base = connect(base->r(), LC->r());

}
return { ra, rb };

}

vector<P> triangulate(vector<P> pts) {
sort(all(pts)); assert(unique(all(pts)) == pts.end());
if (sz(pts) < 2) return {};
Q e = rec(pts).first;
vector<Q> q = {e};
int qi = 0;
while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;

#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
q.push_back(c->r()); c = c->next(); } while (c != e); }
ADD; pts.clear();
while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
return pts;

}

8.5 3D
PolyhedronVolume.h
Description: Magic formula for the volume of a polyhedron. Faces should
point outwards.

3058c3, 6 lines

template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
double v = 0;
for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
return v / 6;

}

Point3D.h
Description: Class to handle points in 3D space. T can be e.g. double or
long long.

8058ae, 32 lines

template<class T> struct Point3D {
typedef Point3D P;
typedef const P& R;
T x, y, z;
explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
bool operator<(R p) const {
return tie(x, y, z) < tie(p.x, p.y, p.z); }

bool operator==(R p) const {
return tie(x, y, z) == tie(p.x, p.y, p.z); }

P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
P operator*(T d) const { return P(x*d, y*d, z*d); }
P operator/(T d) const { return P(x/d, y/d, z/d); }
T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
P cross(R p) const {
return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);

}
T dist2() const { return x*x + y*y + z*z; }
double dist() const { return sqrt((double)dist2()); }
//Azimuthal angle (longitude) to x−axis in interval [−pi , pi]
double phi() const { return atan2(y, x); }
//Zenith angle (latitude) to the z−axis in interval [0 , pi]
double theta() const { return atan2(sqrt(x*x+y*y),z); }
P unit() const { return *this/(T)dist(); } //makes dist ()=1
//returns unit vector normal to *this and p
P normal(P p) const { return cross(p).unit(); }
//returns point rotated ’angle ’ radians ccw around axis
P rotate(double angle, P axis) const {
double s = sin(angle), c = cos(angle); P u = axis.unit();
return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;

}
};

3dHull.h
Description: Computes all faces of the 3-dimension hull of a point set. *No
four points must be coplanar*, or else random results will be returned. All
faces will point outwards.
Time: O

(
n2
)

"Point3D.h" 5b45fc, 49 lines

UI: stack.py sphericalDistance Regex KMP Zfunc Manacher MinRotation SuffixArray 22

typedef Point3D<double> P3;

struct PR {
void ins(int x) { (a == -1 ? a : b) = x; }
void rem(int x) { (a == x ? a : b) = -1; }
int cnt() { return (a != -1) + (b != -1); }
int a, b;

};

struct F { P3 q; int a, b, c; };

vector<F> hull3d(const vector<P3>& A) {
assert(sz(A) >= 4);
vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));

#define E(x,y) E[f.x][f.y]
vector<F> FS;
auto mf = [&](int i, int j, int k, int l) {

P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
if (q.dot(A[l]) > q.dot(A[i]))
q = q * -1;

F f{q, i, j, k};
E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
FS.push_back(f);

};
rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
mf(i, j, k, 6 - i - j - k);

rep(i,4,sz(A)) {
rep(j,0,sz(FS)) {
F f = FS[j];
if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
E(a,b).rem(f.c);
E(a,c).rem(f.b);
E(b,c).rem(f.a);
swap(FS[j--], FS.back());
FS.pop_back();

}
}
int nw = sz(FS);
rep(j,0,nw) {
F f = FS[j];

#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
C(a, b, c); C(a, c, b); C(b, c, a);

}
}
for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);

return FS;
};

sphericalDistance.h
Description: Returns the shortest distance on the sphere with radius ra-
dius between the points with azimuthal angles (longitude) f1 (φ1) and f2 (φ2)
from x axis and zenith angles (latitude) t1 (θ1) and t2 (θ2) from z axis (0 =
north pole). All angles measured in radians. The algorithm starts by con-
verting the spherical coordinates to cartesian coordinates so if that is what
you have you can use only the two last rows. dx*radius is then the difference
between the two points in the x direction and d*radius is the total distance
between the points.

611f07, 8 lines

double sphericalDistance(double f1, double t1,
double f2, double t2, double radius) {

double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
double dz = cos(t2) - cos(t1);
double d = sqrt(dx*dx + dy*dy + dz*dz);
return radius*2*asin(d/2);

}

Strings (9)

Regex.h
Description: You can use the following special characters: ˆ$.*?|(){}
Time: O (NM)
<regex>, <iostream> 88154e, 15 lines

using namespace std;

int main () {
string s ("this subject has a submarine as a subsequence");
smatch m; regex e ("(sub)([^]*)"); // matches words

beginning by ”sub”
// regex search wi l l match the f i r s t occurence
if(regex_match(begin(s), end(s), regex("this .+"))) cout << "

OK" << endl;
while (regex_search (s, m, e)) {
for (auto x : m) cout << x << " ";
cout << endl; s = m.suffix().str();

}
s = "this subject has a submarine as a subsequence";
cout << regex_replace (s,e,"sub-$2");
return 0;

}

KMP.h
Description: pi[x] computes the length of the longest prefix of s that ends
at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all
occurrences of a string.
Time: O (n)

344602, 27 lines

vi pi(const string& s) {
vi p(sz(s));
rep(i,1,sz(s)) {
int g = p[i-1];
while (g && s[i] != s[g]) g = p[g-1];
p[i] = g + (s[i] == s[g]);

}
return p;

}

vi match(const string& s, const string& pat) {
vi p = pi(pat + ’\0’ + s), res;
rep(i,sz(p)-sz(s),sz(p))
if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));

return res;
}

vvi automaton(string s, char ch, int charSize) {
s += ’$’; vi ff = pi(s);
vvi aut(sz(s), vi(charSize));
rep(i, 0, sz(s)) {
rep(c, 0, charSize) {
aut[i][c] = ((i > 0 && ch + c != s[i]) ? aut[ff[i - 1]][c

] : (i + (ch + c == s[i])));
}

}
return aut;

}

Zfunc.h
Description: z[x] computes the length of the longest common prefix of s[i:]
and s, except z[0] = 0. (abacaba -> 0010301)
Time: O (n)

ee09e2, 12 lines

vi Z(const string& S) {
vi z(sz(S));
int l = -1, r = -1;
rep(i,1,sz(S)) {

z[i] = i >= r ? 0 : min(r - i, z[i - l]);
while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
z[i]++;

if (i + z[i] > r)
l = i, r = i + z[i];

}
return z;

}

Manacher.h
Description: For each position in a string, computes p[0][i] = half length
of longest even palindrome around pos i, p[1][i] = longest odd (half rounded
down).
Time: O (N)

e7ad79, 13 lines

array<vi, 2> manacher(const string& s) {
int n = sz(s);
array<vi,2> p = {vi(n+1), vi(n)};
rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
int t = r-i+!z;
if (i<r) p[z][i] = min(t, p[z][l+t]);
int L = i-p[z][i], R = i+p[z][i]-!z;
while (L>=1 && R+1<n && s[L-1] == s[R+1])
p[z][i]++, L--, R++;

if (R>r) l=L, r=R;
}
return p;

}

MinRotation.h
Description: Finds the lexicographically smallest rotation of a string.
Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end());
Time: O (N)

d07a42, 8 lines

int minRotation(string s) {
int a=0, N=sz(s); s += s;
rep(b,0,N) rep(k,0,N) {
if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
if (s[a+k] > s[b+k]) { a = b; break; }

}
return a;

}

SuffixArray.h
Description: Builds suffix array for a string. sa[i] is the starting index
of the suffix which is i’th in the sorted suffix array. The returned vector
is of size n + 1, and sa[0] = n. The lcp array contains longest common
prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i],
sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes.
Time: O (n logn)

38db9f, 23 lines

struct SuffixArray {
vi sa, lcp;
SuffixArray(string& s, int lim=256) { // or basic string<int>
int n = sz(s) + 1, k = 0, a, b;
vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
sa = lcp = y, iota(all(sa), 0);
for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
p = j, iota(all(y), n - j);
rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
fill(all(ws), 0);
rep(i,0,n) ws[x[i]]++;
rep(i,1,lim) ws[i] += ws[i - 1];
for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
swap(x, y), p = 1, x[sa[0]] = 0;
rep(i,1,n) a = sa[i - 1], b = sa[i], x[b] =

(y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
}
rep(i,1,n) rank[sa[i]] = i;

UI: stack.py SuffixTree Aho3S Alien SlopeTrick 23

for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
for (k && k--, j = sa[rank[i] - 1];

s[i + k] == s[j + k]; k++);
}

};

SuffixTree.h
Description: Ukkonen’s algorithm for online suffix tree construction. Each
node contains indices [l, r) into the string, and a list of child nodes. Suffixes
are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has
l = -1, r = 0), non-existent children are -1. To get a complete tree, append
a dummy symbol – otherwise it may contain an incomplete path (still useful
for substring matching, though).
Time: O (26N)

aae0b8, 50 lines

struct SuffixTree {
enum { N = 200010, ALPHA = 26 }; // N ∼ 2*maxlen+10
int toi(char c) { return c - ’a’; }
string a; // v = cur node, q = cur position
int t[N][ALPHA],l[N],r[N],p[N],s[N],v=0,q=0,m=2;

void ukkadd(int i, int c) { suff:
if (r[v]<=q) {
if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
p[m++]=v; v=s[v]; q=r[v]; goto suff; }

v=t[v][c]; q=l[v];
}
if (q==-1 || c==toi(a[q])) q++; else {
l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
v=s[p[m]]; q=l[m];
while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }
if (q==r[m]) s[m]=v; else s[m]=m+2;
q=r[v]-(q-r[m]); m+=2; goto suff;

}
}

SuffixTree(string a) : a(a) {
fill(r,r+N,sz(a));
memset(s, 0, sizeof s);
memset(t, -1, sizeof t);
fill(t[1],t[1]+ALPHA,0);
s[0] = 1; l[0] = l[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
rep(i,0,sz(a)) ukkadd(i, toi(a[i]));

}

// example: find longest common substring (uses ALPHA = 28)
pii best;
int lcs(int node, int i1, int i2, int olen) {
if (l[node] <= i1 && i1 < r[node]) return 1;
if (l[node] <= i2 && i2 < r[node]) return 2;
int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
rep(c,0,ALPHA) if (t[node][c] != -1)
mask |= lcs(t[node][c], i1, i2, len);

if (mask == 3)
best = max(best, {len, r[node] - len});

return mask;
}
static pii LCS(string s, string t) {
SuffixTree st(s + (char)(’z’ + 1) + t + (char)(’z’ + 2));
st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
return st.best;

}
};

Aho3S.h
Description: Aho-Corasick by Kak Ucup

08beab, 51 lines

struct AhoCorasick {
int trie[N][26], fail[N], saiz;
AhoCorasick() {
memset(trie[0],-1,sizeof trie[0]);
saiz = 0;

}
void add(string str) {
int cur = 0;
for(int i = 0 ; i < str.length() ; i++) {

//checkChar(str [i]) ;
int nex = str[i] - ’a’;
if(trie[cur][nex] == -1) {
trie[cur][nex] = ++saiz;
memset(trie[saiz],-1,sizeof trie[saiz]);

}
cur = trie[cur][nex];

}
}
void build() {
queue<int> q;
fail[0] = 0;
for(int i = 0 ; i < 26 ; i++)
if(trie[0][i] == -1)
trie[0][i] = 0;

else {
int nex = trie[0][i];
fail[nex] = 0;
q.push(nex);

}
while(!q.empty()) {
int now = q.front();
q.pop();
for(int i = 0 ; i < 26 ; i++)

if(trie[now][i] == -1)
trie[now][i] = trie[fail[now]][i];

else {
int nex = trie[now][i];
fail[nex] = trie[fail[now]][i];
q.push(nex);

}
}

}
int getIndex(string str) {
int cur = 0;
for(int i = 0 ; i < str.length() ; i++) {

//checkChar(str [i]) ;
cur = trie[cur][str[i] - ’a’];

}
return cur;

}
};

Various (10)

10.1 Dynamic programming
Alien.h
Description: Solution for alien
Time: O (NlogK)

8382fb, 39 lines

pi trial(lint l){
cht.clear();
for(int i=1; i<=v.size(); i++){
cht.add_line(2 * 2 * v[i-1].first, dp[i-1].first +
2ll * v[i-1].first * v[i-1].first, dp[i-1].second);

dp[i] = cht.query(-v[i-1].second);

dp[i].first += 2ll * v[i-1].second * v[i-1].second + l; //
l is penalty

dp[i].second++;
if(i != v.size()){
lint c = max(0ll, v[i-1].second - v[i].first);
dp[i].first -= 2 * c * c;

}
}
return dp[v.size()];

}

long long take_photos(int n, int m, int k, std::vector<int> r,
std::vector<int> c) {

vector<pi> w;
for(int i=0; i<n; i++){
if(r[i] > c[i]) swap(r[i], c[i]);
w.push_back({r[i]-1, c[i]});

}
sort(w.begin(), w.end(), [&](const pi &a, const pi &b){
return pi(a.first, -a.second) < pi(b.first, -b.second);

});
for(auto &i : w){

if(v.empty() || v.back().second < i.second){
v.push_back(i);

}
}
lint s = 0, e = 2e12;
while(s != e){
lint m = (s+e)/2;
// See how many groups are made with penalty 2*m+1
if(trial(2 * m + 1).second <= k) e = m;
else s = m+1;

}
return trial(s * 2).first / 2 - s * k;

}

SlopeTrick.h
Description: Slope Trick making it increasing with cost to up and down
different
Time: O (N logN)

453f59, 41 lines

int solve() {
int n; cin >> n;
vector<LL> isi(n);
vector<PLL> cost(n);
trav(cur, isi) cin >> cur;
trav(cur, cost) cin >> cur.fi;
trav(cur, cost) cin >> cur.se;
LL ans = 0;
priority_queue <PLL> solve;
rep(i, 0, n) {
auto &cur = cost[i];
// Push ke i s i [i] , gradiennya cur . f i + cur . se
solve.push({isi[i], cur.fi + cur.se});
// Push lagi buat kurangin gradien
solve.push({max(isi[i], solve.top().fi), -cur.fi});
ans += (solve.top().fi - isi[i]) * cur.fi;
// Maintain minimum
while (solve.size() >= 2){
PLL now = solve.top(); solve.pop();
PLL pre = solve.top(); solve.pop();
// Merge dua slope
if(now.fi == pre.fi){
now.se += pre.se;
solve.push(now);
continue;

}else if(pre.fi < now.fi && now.se <= 0){
// Slope trick , geser opt
pre.se += now.se;

UI: stack.py SosDP KnuthDP DivideAndConquerDP FastMod Random ClockTime FastInput BumpAllocator StableMarriage MoserCircle 24

solve.push(pre);
ans += (now.fi - pre.fi) * now.se;
continue;

}else{
solve.push(pre);
solve.push(now);
break;

}
}

}
cout << ans << endl;
return 0;

}

SosDP.h
Description: Consider using FWHT

481c5f, 9 lines

void sos() {
//Dp[mask] contain a l l numbers of submask
for (int i = 0; i <= 23; i++)
for (int mask = (1LL << 24) - 1; mask >= 0; mask--)
if (mask & (1LL << i)) dp[mask] += dp[mask ^ (1LL << i)];

LL ans = 0;
for (int mask = (1LL << 24) - 1; mask >= 0; mask--)
dp[mask] = n - dp[mask], ans ^= (dp[mask] * dp[mask]);

}

KnuthDP.h
Description: When doing DP on intervals: a[i][j] = mini<k<j(a[i][k] +
a[k][j]) + f(i, j), where the (minimal) optimal k increases with both i
and j, one can solve intervals in increasing order of length, and search
k = p[i][j] for a[i][j] only between p[i][j − 1] and p[i + 1][j]. This is
known as Knuth DP. Sufficient criteria for this are if f(b, c) ≤ f(a, d) and
f(a, c) + f(b, d) ≤ f(a, d) + f(b, c) for all a ≤ b ≤ c ≤ d. Consider also:
LineContainer (ch. Data structures), monotone queues, ternary search.
Time: O

(
N2
)

701e4d, 20 lines

int main() {
for (int i = 1; i < n; i++) {
memo[i][i + 1] = isi[i] + isi[i + 1];
opt[i][i + 1] = i;

}
for (int i = 2; i <= n; i++) {

//Compute for i+1 segment
for (int j = 1; j + i <= n; j++) {
LL cur = LINF;
for (int k = opt[j][j + i - 1]; k <= opt[j + 1][j + i]; k

++) {
LL now = memo[j][k] + memo[k + 1][j + i];
if (cur > now) {
cur = now;
opt[j][j + i] = k;

}
}
memo[j][j + i] = cur + (psum[j + i] - psum[j - 1]);

}
}

}

DivideAndConquerDP.h
Description: Given a[i] = minlo(i)≤k<hi(i)(f(i, k)) where the (minimal)
optimal k increases with i, computes a[i] for i = L..R− 1.
Time: O ((N + (hi− lo)) logN)

d38d2b, 18 lines

struct DP { // Modify at wi l l :
int lo(int ind) { return 0; }
int hi(int ind) { return ind; }
ll f(int ind, int k) { return dp[ind][k]; }
void store(int ind, int k, ll v) { res[ind] = pii(k, v); }

void rec(int L, int R, int LO, int HI) {
if (L >= R) return;
int mid = (L + R) >> 1;
pair<ll, int> best(LLONG_MAX, LO);
rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
best = min(best, make_pair(f(mid, k), k));

store(mid, best.second, best.first);
rec(L, mid, LO, best.second+1);
rec(mid+1, R, best.second, HI);

}
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }

};

10.2 Debugging tricks

� signal(SIGSEGV, [](int) { _Exit(0); });
converts segfaults into Wrong Answers. Similarly one can
catch SIGABRT (assertion failures) and SIGFPE (zero
divisions). _GLIBCXX_DEBUG failures generate SIGABRT
(or SIGSEGV on gcc 5.4.0 apparently).

� feenableexcept(29); kills the program on NaNs (1),
0-divs (4), infinities (8) and denormals (16).

10.3 Optimization tricks
__builtin_ia32_ldmxcsr(40896); disables denormals
(which make floats 20x slower near their minimum value).

10.3.1 Bit hacks

� x & -x is the least bit in x.

� for (int x = m; x;) { --x &= m; ... } loops
over all subset masks of m (except m itself).

� c = x&-x, r = x+c; (((rˆx) >> 2)/c) | r is the
next number after x with the same number of bits set.

� rep(b,0,K) rep(i,0,(1 << K))
if (i & 1 << b) D[i] += D[iˆ(1 << b)];

computes all sums of subsets.

FastMod.h
Description: Compute a%b about 5 times faster than usual, where b is
constant but not known at compile time. Returns a value congruent to a
(mod b) in the range [0, 2b).

751a02, 8 lines

typedef unsigned long long ull;
struct FastMod {

ull b, m;
FastMod(ull b) : b(b), m(-1ULL / b) {}
ull reduce(ull a) { // a % b + (0 or b)
return a - (ull)((__uint128_t(m) * a) >> 64) * b;

}
};

Random.h
Description: Random using mersenne twister
Usage: rng()
<random>, <chrono> 99f56c, 7 lines

mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().
count());

// shuff le (i s i . begin() , i s i .end() ,rng) ;

LL getRange(LL a, LL b){
LL ran = b-a+1;
return (rng()%ran)+a;

}

ClockTime.h
Description: Elapsed time from the beginning of running program
Usage: cek time()

0453a9, 5 lines

clock_t first_attempt = clock();
inline void cek_time(){

clock_t cur = clock()- first_attempt;
cerr<<"TIME : "<<(double) cur/CLOCKS_PER_SEC<<endl;

}

FastInput.h
Description: Read an integer from stdin. Usage requires your program to
pipe in input from file.
Usage: ./a.out < input.txt
Time: About 5x as fast as cin/scanf.

7b3c70, 17 lines

inline char gc() { // l ike getchar()
static char buf[1 << 16];
static size_t bc, be;
if (bc >= be) {

buf[0] = 0, bc = 0;
be = fread(buf, 1, sizeof(buf), stdin);

}
return buf[bc++]; // returns 0 on EOF

}

int readInt() {
int a, c;
while ((a = gc()) < 40);
if (a == ’-’) return -readInt();
while ((c = gc()) >= 48) a = a * 10 + c - 480;
return a - 48;

}

BumpAllocator.h
Description: When you need to dynamically allocate many objects and
don’t care about freeing them. ”new X” otherwise has an overhead of some-
thing like 0.05us + 16 bytes per allocation.

745db2, 8 lines

// Either globally or in a single class :
static char buf[450 << 20];
void* operator new(size_t s) {

static size_t i = sizeof buf;
assert(s < i);
return (void*)&buf[i -= s];

}
void operator delete(void*) {}

10.4 Known Problems
StableMarriage.h
Description: While there is a free man m: let w be the most preferred
woman to whom he has not yet proposed, and propose m to w. If w is free,
or is engaged to someone whom she prefers less than m, match m with w,
else deny proposal.

MoserCircle.h
Description: Determine the number of pieces into which a circle is divided
if n points on its circumference are joined by chords with no three internally
concurrent. Solution: g(n) = nC4 + nC2 + 1.

UI: stack.pyChickenMcNugget EulerFaceFormula CayleyFormula PickTheorem JosephusProblem ErdosGallai OpenPit 2sat Sparse2D NarrowRectangle 25

ChickenMcNugget.h
Description: Chicken McNugget Theorem states that for any two relatively
prime positive integers m,n, the greatest integer that cannot be written in
the form am+bn for nonnegative integers a,b is mn – m - n.

EulerFaceFormula.h
Description: V – E + F = 2 [V: vertices E: edges F: faces]

CayleyFormula.h
Description: There are nn−2 spanning trees of a complete graph with n la-
beled vertices. Spanning Tree of Complete Bipartite Graph is NM−1∗MN−1.

PickTheorem.h
Description: Pick’s Theorem: A = i + b/2 – 1. A is Area, I is internal
points, and B is Border points .

JosephusProblem.h
Description: There are n person in a table waiting to be executed. Person
1 hold a knife. Each step whoever has the knife, kill the person next to him.
Who’s alive at the end?

f8e6ed, 12 lines

int x = 0;
for (int i = 2; i <= n; ++i)
x = (x + i) % i;

int josephus(int n, int k) {
if (n == 1) return 0;
if (k == 1) return n-1;
if (k > n) return (josephus(n-1, k) + k) % n;
int cnt = n / k, res = josephus(n - cnt, k) - (n % k);
res += (res < 0 ? n : (res / (k - 1)));
return res;

}

ErdosGallai.h
Description: Given degree of n nodes. Is it possible to build the graph?

f008a5, 20 lines

sort(d+1, d+n+1, greater<int>);
for (i=1;i<=n;i++)

x[i] = x[i-1] + d[i];
if (x[n]&1) {

printf("Not possible\n");
continue;

}
can = true;
for (k=1;k<=n;k++) {

sum = x[k];
tmp = k*(k-1);
for (i=k+1;i<=n;i++)

tmp += min(d[i], k);
if (sum > tmp) {

can = false;
break;

}
}
if (can) printf("Possible\n");
else printf("Not possible\n");

10.5 Minimum-Cut Problems
OpenPit.h
Description: Open Pit

4e4011, 13 lines

for (int i = 1; i <= n; i++) {
int a, b; cin >> a >> b;

isi[i] = a - b; int m; cin >> m;
while (m--) { int v; cin >> v; edges.pb({i, v}); }

}
PushRelabel solve(n + 2);
for (int i = 1; i <= n; i++) {

int curcost = abs(isi[i]);
if (isi[i] == curcost) ans += curcost, solve.add_edge(0, i,

curcost);
else solve.add_edge(i, n + 1, curcost);

}
trav(edge, edges) solve.add_edge(edge.se, edge.fi, INF);
cout << ans - solve.maxflow(0, n + 1) << endl;

../graph/2sat.h
Description: Calculates a valid assignment to boolean variables a,
b, c,... to a 2-SAT problem, so that an expression of the type
(a‖‖b)&&(!a‖‖c)&&(d‖‖!b)&&... becomes true, or reports that it is unsatis-
fiable. Negated variables are represented by bit-inversions (∼x).
Usage: TwoSat ts(number of boolean variables);
ts.either(0, ∼3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne({0,∼1,2}); // <= 1 of vars 0, ∼1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
Time: O (N + E), where N is the number of boolean variables, and E is the
number of clauses.

5f9706, 50 lines

struct TwoSat {
int N;
vector<vi> gr;
vi values; // 0 = false , 1 = true
TwoSat(int n = 0) : N(n), gr(2*n) {}
int addVar() { // (optional)
gr.emplace_back();
gr.emplace_back();
return N++;

}
void either(int f, int j) {
f = max(2*f, -1-2*f);
j = max(2*j, -1-2*j);
gr[f].push_back(j^1);
gr[j].push_back(f^1);

}
void setValue(int x) { either(x, x); }
void atMostOne(const vi& li) { // (optional)
if (sz(li) <= 1) return;
int cur = ∼li[0];
rep(i,2,sz(li)) {
int next = addVar();
either(cur, ∼li[i]);
either(cur, next);
either(∼li[i], next);
cur = ∼next;

}
either(cur, ∼li[1]);

}
vi val, comp, z; int time = 0;
int dfs(int i) {
int low = val[i] = ++time, x; z.push_back(i);
for(int e : gr[i]) if (!comp[e])
low = min(low, val[e] ?: dfs(e));

if (low == val[i]) do {
x = z.back(); z.pop_back();
comp[x] = low;
if (values[x>>1] == -1)

values[x>>1] = x&1;
} while (x != i);
return val[i] = low;

}

bool solve() {
values.assign(N, -1);
val.assign(2*N, 0); comp = val;
rep(i,0,2*N) if (!comp[i]) dfs(i);
rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
return 1;

}
};

../data-structures/Sparse2D.h
Description: Offline solve 2d commutative query This query is exclusive
1-based, change to [st, ed). Reduce to 0-based indexing!
Time: O

(
N log2N

)
, query in O (1)

447412, 18 lines

const int LOGN = 13;
int sparset[LOGN][LOGN][205][205];
rep(i,0,n) rep(j,0,m) cin >> sparset[0][0][i][j];
rep(i,0,n) rep(logj,1,LOGN) rep(j,0,m-(1<<logj)+1)

sparset[0][logj][i][j] = min(sparset[0][logj-1][i][j],
sparset[0][logj-1][i][j+(1<<(logj-1))]);

rep(logi, 1, LOGN) rep(logj, 0, LOGN)
rep(i,0,n-(1<<logi)+1)
rep(j,0,m-(1<<logj)+1)

sparset[logi][logj][i][j] = min(sparset[logi-1][logj][i][j
],

sparset[logi-1][logj][i+(1<<(logi-1))][j]);
cin >> st.fi >> st.se >> ed.fi >> ed.se; st.fi--; st.se--;
int lenrow = 31-__builtin_clz(ed.fi-st.fi);
int lencol = 31-__builtin_clz(ed.se-st.se);
res1 = min(min(min(sparset[lenrow][lencol][st.fi][st.se],
sparset[lenrow][lencol][st.fi][ed.se-(1<<lencol)]),
sparset[lenrow][lencol][ed.fi-(1<<lenrow)][st.se]),
sparset[lenrow][lencol][ed.fi-(1<<lenrow)][ed.se-(1<<lencol)]);

NarrowRectangle.h
Description: Define dp[i][x]: the minimum cost to move the first i rect-
angles such that the last (the i-th) rectangle’s leftmost coordinate is x. This
will lead to a solution for partial score.

8195b9, 25 lines

priority_queue<LL> kiri;
priority_queue<LL, vector<LL>, greater<LL> > kanan;
int main() {

ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) cin >> l[i] >> r[i];
LL ans = 0LL, lzl = 0LL, lzr = 0LL;
kiri.push(l[1]); kanan.push(l[1]);
for (int i = 2; i <= n; i++) {
lzr += r[i - 1] - l[i - 1];
lzl -= r[i] - l[i];
LL tmpl = kiri.top() + lzl, tmpr = kanan.top() + lzr;
if (l[i] <= tmpl) {
kiri.pop(); kiri.push(l[i] - lzl); kiri.push(l[i] - lzl);
kanan.push(tmpl - lzr); ans += llabs(tmpl - l[i]);

} else if (l[i] >= tmpr) {
kanan.pop(); kanan.push(l[i] - lzr); kanan.push(l[i] -

lzr);
kiri.push(tmpr - lzl); ans += llabs(l[i] - tmpr);

} else {
kiri.push(l[i] - lzl); kanan.push(l[i] - lzr);

}
}
cout << ans << ’\n’;
return 0;

}

	Contest
	Mathematics
	Data structures
	Numerical
	Number theory
	Combinatorial
	Graph
	Geometry
	Strings
	Various

