Universitas Indonesia

stack.py

Joh Dilarang Toxic:
R. Fausta ”faustaadp” Anugrah Dianparama
Pikatan ”Pyqe” Arya Bramajati
Hocky ”hocky” Yudhiono

[CPC Regional Jakarta 2022
Nov 27, 2022

Ul: stack.py
Contest (1)

template.cpp

15 lines

#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all (x) begin(x), end(x)
#define sz (x) (int) (x) .size()

#define trav(x, v) for(auto &x : V)
typedef long long 11;

typedef pair<int, int> pii;
typedef vector<int> vi;

int main() {
cin.tie(0)->sync_with_stdio (0);
cin.exceptions (cin.failbit);

}

template.py
Description: Fast I/O. Improves performance when reading many (> 10%)
lines. Returns an empty string instead of raising EOFError!

5 lines
import sys
sys.setrecursionlimit (10%%9)
input = lambda: sys.stdin.readline().rstrip(’\r\n’)
Many calls to print is also slow, consider:
print (' \n’.Jjoin (buffered_output))
bashre 12 lines
xmodmap —e ’‘clear lock’ -e 'keycode 66=less greater’ #caps =<>
go() {
—Wall —Wshadow —Wreturn—type —Wunused nyalain aja! pasti
berguna

glibzz debug buat ngecek out of bound di vector

—fsanitize=undefined, address buat ngecek out of bound di
array

—Wil——stack,1073741824 buat stack size

g++ —-std=c++17 -Wall -Wshadow -Wreturn-type -Wunused -
D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC -fsanitize=
undefined, address "$1".cpp -o $1

gg () {
./$1 < in

Mathematics (2)

2.1 Equations
—b =+ Vb? — dac

ar® +br+c=0=>z=

2a
The extremum is given by x = —b/2a.
_ed—bf
ar+by=e 7 i be
cx+dy=f :affec
Y ad — be

template template .bashrc

In general, given an equation Az = b, the solution to a variable
x; is given by

_ det 4]

"~ detA

where A) is A with the i’th column replaced by b.

L

2.2 Recurrences
If ap, = cian—1 4+ - -+ ckan—k, and 71, ..., r, are distinct roots of
¥ 4+ 12"+ - 4 ¢, there are dy, . .., dy s.t.

an =dir] + -+ dpry.

Non-distinct roots r become polynomial factors, e.g.
an = (din + dg)r™.

2.3 'Trigonometry

sin(v 4+ w) = sinv cos w + cos v sinw

cos(v + w) = cosv cosw — sin v sinw

tanv + tanw

tan(v + w) = ————
() 1 — tanvtanw
. . . vtw v—w
sinv 4 sinw = 2sin cos 5
v+ w v —w
cosv + cosw = 2 cos cos 5

(V4+W)tan(v —w)/2 = (V — W) tan(v + w)/2
where V, W are lengths of sides opposite angles v, w.

acosx + bsinz = rcos(x — @)

asinz + bcosz = rsin(x + ¢)

where r = Va? + b2, ¢ = atan2(b, a).
2.4 Geometry

2.4.1 Triangles
Side lengths: a, b, c

o a+b+c
Semiperimeter: p = —
Area: A = \/p(p - a)l()P —b)(p—c)

. . abe
Circumradius: R = 1A

Inradius: r = —

Length of median (divides triangle into two equal-area triangles):
ma = $V202 + 2¢2 — a2

Length of bisector (divides angles in two):

2
a
Sa = , | be [1— <b+c)

Law of sines: sin o = sin — sin y — L
a c 2R
Law of cosines: a? = b% + ¢? — 2bccos a
tan ath
b
Law of tangents: Z i— ;= - E 3

t
2.4.2 Quadrilaterals My
With side lengths a, b, ¢, d, diagonals e, f, diagonals angle 0, area
A and magic flux F = b* 4+ d? — a? — ¢

4A =2ef -sinf = Ftanf = \/4e?f2 — F?

For cyclic quadrilaterals the sum of opposite angles is 180°,

o/ 537 SPhadal cogtlmgtds V(P — b —d).

x = rsinf cos ¢ r =22+ y? + 22
y=rsinfsing 0 = acos(z//x? + y% + 22?)

z =rcosf ¢ = atan2(y, r)

2.5 Derivatives/Integrals

1 d 1
% arcsinx = ﬁ % arccosr = _ﬁ

d 2 d
—tanz =1+tan"x — arctanx =
dx dx

/ In | cos az|
tanar = —————
a

/ e = VT ()

1+ 22
. sinax — ax cos ax
rsinar = ——M—
a2

ax eaz
3 /xe dl::a—Q(a:r—l)

Integration by parts:

/ F@)g(@)ds = [F(z)g()]’ — / F(2)g (¢)da

Ul stack.py

2.6 Sums
a a+1 b Cb+l_ca
T4+ =———,c#1
c—1
1+2+3+---+n:w
2 1 1
242248 g2 = PEE DD ”+6)(”+)
2 1)2
13+23+33+...+n3:w
2 p—
14_~_24_’_34+“.+n4:n(n+1)(2n+1)(3n +3n—1)
30
S () =2t S () = (gt

i) =0 Sose (D02 = G
Srno (1) = (1) S () = P+ 1)
o () = () i) = 3()
Lo () =t) T, () =2
Yoo (CDH()" = G

i(_l)k a+b\[(b+c)fct+a) (a+b+c)
it a+k)\b+k/\c+k]) alble
2.7 Series
. I
e :1+m+§+§+...,(—oo<:c<oo)
2 3 4
1n(1+x):x—‘%+%—%+...,(—1<x§1)
z 2 22° 52t
V =142 - 42 2 4 (-1<z<
1+ 1+2 8+32 128+ ,(-1<z <)
S
sinz =z 3'—1—5—?—&— ., (Foo <z < o0)
2?2t af
cosmzl—j—&—ﬁ a—&—. , (—oo <z < 0)

Let X be a discrete random variable with probability px (z) of
assuming the value z. It will then have an expected value (mean)
pw=E(X)=>"_ xpx(x) and variance

o =V(X)=E(X? — (E(X))*> =3, (z — E(X))’px (z) where o
is the standard deviation. If X is instead continuous it will have
a probability density function fx(x) and the sums above will
instead be integrals with px (x) replaced by fx (z).

Expectation is linear:
E(aX 4+ bY) = aE(X) + bE(Y)
For independent X and Y,
V(aX +bY) = a’V(X) + b’V (Y).

OrderStatisticTree HashMap

2.8.1 Discrete distributions
Binomial distribution

The number of successes in n independent yes/no experiments,
each which yields success with probability p is
Bin(n,p),n=1,2,...,0<p < 1.

(Z) P —p)F

p=np, " =np(l—p)

p(k) =

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in
independent yes/no experiments, each wich yields success with
probability p is Fs(p), 0 < p < 1.

p(k)) :p(l 7p)k717 k= 1727 cee

Poisson distribution

The number of events occurring in a fixed period of time ¢ if these
events occur with a known average rate x and independently of
the time since the last event is Po(\), A = tk.

A AE
pk)=e E,k:0,1,2,...
p=2X 0> =X

2.8.2 Continuous distributions
Uniform distribution

If the probability density function is constant between a and b
and 0 elsewhere it is U(a, b), a < b.

1
_ b—a a<x< b
flz) = { 0 otherwise
a+b 5 (b—a)
= , 00 = ———
2 12

Exponential distribution

The time between events in a Poisson process is
Exp(A), A > 0.

x>0
<0

Normal distribution

2

Most real random values with mean p and variance o* are well

described by N (u,0?), o > 0.

If X1 ~N(p1,01) and Xa ~ N (uz2,03) then

aX1+bXo+c~N(pu1 + p2 + c,a’o? + b%’g’)

Data structures (3)

OrderStatisticTree.h
Description: A set (not multiset!) with support for finding the n’th ele-
ment, and finding the index of an element. To get a map, change null_type.

Time: O (log N) 782797, 16 lines

#include <bits/extc++.h>
using namespace __gnu_pbds;

template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
tree_order_statistics_node_update>;

void example () {

Tree<int> t, t2; t.insert(8);

auto it = t.insert (10).first;

assert (it == t.lower_bound(9));

assert (t.order_of_key (10) == 1);

assert (t.order_of_key (1l1l) == 2);

assert («t.find_by_order (0) == 8);

t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
}

HashMap.h
Description: Hash map with mostly the same API as unordered_map, but
~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if

provided). d77092, 7 lines

#include <bits/extc+t+.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
const uint64_t C = 11(4el8 * acos(0)) | 71;
11 operator () (11 x) const { return _ builtin_bswap64 (xxC); }
Yi
__gnu_pbds::gp_hash_table<ll,int, chash> h({},{},{},{}, {1<<16});

Ul stack.py
WaveletTree.h

Description: Tree that recursively partitions a sequence into subsequences
by value. o is the difference between the largest and smallest element in the
sequence (pre-compress values if o is large). Use with a bump allocator for
better performance.

Usage: auto [lo, hi] = minmax-element (all(A));

Node tr (A, *lo, (xhi)+1);

Time: O (logo). Space: O (N logo). 718706, 35 lines

struct Node {
Node x1 = 0, *r = 0;
int lo, hi; vi C; // C[i] =# of first i elements going left

Node (const vi& A, int lo, int hi) : lo(lo), hi(hi), C(1, 0) {
if(lo + 1 == hi) return;
int mid = (lo + hi) / 2;
vi L, R;

for (int a: A) {
C.push_back (C.back ()) ;
if (a < mid) L.push_back(a), C.back()++;
else R.push_back(a);
}
1 = new Node(L, lo, mid), r = new Node (R, mid, hi);
}
// k’th (0—indezed) element in the sorted range [L, R)
int quantile(int k, int L, int R) {
if(lo + 1 == hi) return lo;
int ¢ = C[R] - C[L];
if(k < c) return l->quantile(k, C[L], C[R]);
return r->quantile(k - ¢, L - C[L], R - C[R]);
}
// number of elements in range [0, R) equal to z
int rank(int x, int R) {
if(lo + == hi) return R;
if(x < 1->hi) return l->rank(x, C[R]);
return r->rank(x, R - C[R]);
}
// number of elements x in range [L, R) st. a<=z < b
int rectangle(int a, int b, int L, int R) {
if(a <= lo && hi <= b) return R - L;
if(a > hi || b <= lo) return 0;
return l->rectangle(a, b, C[L], C[R]) +
r->rectangle(a, b, L - C[L], R - C[R]);
}
Yi

LiChaoTree.h

Description: Jago

06b342, 90 lines

template<typename data_t>
struct Line {
data_t a, b;
Line() : a(0), b(-inf) {}
Line(data_t a, data_t b) : a(a), b(b) {}
data_t get (data_t x) {
return a * x + b;
}
void add(Line x) {
a += x.a;
b += x.b;
}
Yi
struct Node {
Line<data_t> line = Line<data_t>();
Line<data_t> lazy = Line<data_t> (0, 0);
Node =xlc = nullptr, *rc = nullptr;
void apply(data_t 1, data_t r, Line<data_t> v) {
line.add(v); lazy.add(v);
}
Yi
void Pushlazy (Nodex &n, data_t tl, data_t tr) {

}

void PushLine (Nodex* &n,
return;

(tl + tr) / 2;
InsertLineKnowingly (n->1c, tl, mid, n->line);

}

void InsertLineKnowingly (Nodex &n,

}

void InsertLine (Nodex &n, data_t tl, data_t
Line<data_t> x) {
|| t1 > tr || 1 > r)

}

void AddLine (Nodex* &n,
Line<data_t> x)

}

data_t Query (Nodex* &n,
(n == nullptr)

}

void InsertLine(data_t 1, data_t r, Line<data_t> x)
return Insertline(root, 0, sz - 1, 1, r,

}

void AddLine (data_t 1,
return AddLine (root,

}

if
if
if

data_t mid
n->lc->apply (tl,
n->rc->apply (mid + 1,

n->lazy Line<data_t> (0, 0);

if

data_t mid

(n == nullptr)

return;
n->1lc = new Node();
n->rc = new Node () ;
(tl + tr) / 2;

n->lazy);
tr, n->lazy);

data_t tl, data_t tr)

InsertLineKnowingly (n->rc, mid + 1, tr,

n->line

if
if
if
if

data_t mid
PushLazy (n,
(n->line.get (mid)
InsertLineKnowingly (n->rc, mid + 1, tr,
} else {
swap (n->1ine,
InsertLineKnowingly (n->1c, tl, mid, x);

if

}

if
if
if

data_t mid
PushLazy (n,
InsertLine (n->1c,
InsertLine (n->rc,

if
if
if

data_t mid
PushlLazy (n,
AddLine (n->1c,
AddLine (n->rc,

if
if

(n->line.get (tl)
(n—->line.get (tr)

(n == nullptr)
(1 <= tl && tr <= r)

(L <= tl && tr <= r)
(tl + tr) / 2;
PushLine (n, tl, tr);
mid, 1, r, x);

mid + 1, tr, 1, r, x);

Line<data_t>();

7

new Node

(
< x.get (tl)) swap(n->line,
>= x.get (tr

(tl + tr) / 2;

> x.get (mid)) {

new Node () ;

(tl + tr) / 2;

mid, 1, r, x);

mid + 1, tr, 1, r, x);

data_t tl, data_t tr,

{
[l tl >tr || 1> 1)

new Node () ;

data_t tl, data_t tr,
return -inf;
return n->line.get (x);

data_t res = n->line.get (x);

data_t mid
PushLazy (n,

if

res
else

res
return res;

(tl + tr) / 2;

Query (n->1lc, tl, mid,

Query (n->rc, mid + 1,

data_t r, Line<data_t> x)
0, sz -1, 1, r, x);

WaveletTree LiChaoTree UnionFind UnionFindRollback SubMatrix 3

data_t Query(data_t x) {

return Query (root, 0, sz - 1, x);

}

UnionFind.h

Description: Disjoint-set data structure.
Time: O (a(N))

Taa2Tc, 14 lines

data_t t1,

)) return;

struct UF {

vi e;

UF (int n) : e(n, -1) {}

bool sameSet (int a, int b) { return find(a) == find(b); }
int size(int x) { return -e[find(x)]; }

int find(int x) { return e[x] < 0 2 x : e[x] = find(e[x]); }

bool join(int a, int b) {
a = find(a), b = find(b);

if (a == b) return false;
if (e[a] > e[b]) swap(a, b);
ela] += e[b]l; el[b] = a;
return true;
}
Yi

UnionFindRollback.h
Description: Disjoint-set data structure with undo. If undo is not needed,
skip st, time() and rollback().

Usage: int t = uf.time(); ...; uf.rollback(t);
Time: O (log(N))

ded4ad0, 21 lines

return InsertLineKnowingly (n,

return n->apply (t

struct RollbackUF {
vi e; vector<pii> st;

RollbackUF (int n) : e(n, -1) {}
int size(int x) { return -e[find(x)]; }
int find(int x) { return e[x] < 0 ? x : find(e[x]); }

int time() { return sz (st); }

void rollback (int t) {
for (int i = time(); 1 --> t;)
e[st[i].first] = st[i].second;

st.resize(t);

}

bool join(int a, int b) {
a = find(a), b = find(b);
if (a == b) return false;
if (el[a] > e[b]) swap(a, b);
st.push_back ({a, el[al});
st.push_back ({b, e[b]});
ela] += e[b]l; e[b] = a;
return true;

}

}i

SubMatrix.h
Description: Calculate submatrix sums quickly, given upper-left and lower-
right corners (half-open).

Usage: SubMatrix<int> m(matrix);
m.sum(0, 0, 2, 2); // top left 4 elements
Thne:C)@V2+—Q)

c59ada, 13 lines

template<class T>
struct SubMatrix {

vector<vector<T>> p;

SubMatrix (vector<vector<T>>& v) {
int R = sz(v), C = sz(vI[0]);
p.assign(R+1, vector<T>(C+1l));
rep(r,0,R) rep(c,0,C)

plr+l]l[c+l] = v[rllc]l + plr]llc+l] + plr+l][c] - plrllcl;
}
T sum(int u, int 1, int d, int r) {
return p(d] [r] - p[d][1l] - plullr] + plulll];

Ul stack.py

}
Yi

Matrix.h

Description: Basic operations on square matrices.
Usage: Matrix<int, 3> A;

a.d = {{{{1,2,3}}, {{4,5 6}, {{7,8,9}}}};
vector<int> vec = {1,2,3};

vec = (A'N) x vec; c43c7d, 26 lines

template<class T, int N> struct Matrix {
typedef Matrix M;
array<array<T, N>,
M operatorx (const M& m)
M a;
rep(i,0,N) rep(j,0,N)
rep(k,0,N) a.d[i][]]
return a;
}
vector<T> operatorx (const vector<T>& vec)
vector<T> ret (N);
rep(i,0,N) rep(j,0,N)
return ret;

N> d{};
const {

+= d[i] [k]*m.d[k][3];

const {

ret[i] += d[i][3] » vecl3jl;

—~

M operator” (11 p)
assert (p >= 0);
M a, b(xthis);
rep (i, 0,N) a.d[i][1] = 1;
while (p) {

if (p&l) a =
b = bxb;
p >>= 1;

const {

axb;

}
return a;
}
}i

LineContainer.h

Description: Container where you can add lines of the form kx+m, and
query maximum values at points x. Useful for dynamic programming (“con-
vex hull trick”).

Time: O (log N) 8eclc?, 30 lines

struct Line {
mutable 11 k, m, p;
bool operator<(const Line& o) const { return k < o.k; }
bool operator<(ll x) const { return p < x; }

}i

struct LineContainer multiset<Line, less<>> {
// (for doubles, use inf = 1/.0, div(a,b) = a/b)
static const 11 inf = LLONG_MAX;
11 div (1l a, 11 b) { // floored division
return a / b - ((a ~ b) <0 && a % b); }
bool isect (iterator x, iterator y) {
if (y == end()) return x->p = inf, O0;
if (x->k == y->k) x->p = x->m > y->m ? inf
else x—>p = div(y->m - x->m, x->k - y->k);

—inf;

return x->p >= y->p;
}
void add (1l k, 11 m) {
auto z = insert({k, m, 0}), vy = z++, x = y;
while (isect(y, 2z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (-—-x)->p >= y—>p)
isect (x, erase(y));
}

11 query (1l x) {
assert (!lempty());

auto 1 = xlower_bound(x);
return 1.k *x x + l.m;
}
Yi
Treap.h

Description: A short self-balancing tree. It acts as a sequential container
with log-time splits/joins, and is easy to augment with additional data.

Time: O (log N) 9556fc, 55 lines

struct Node {
Node x1 = 0, =«
int val, y, c
Node (int val)
void recalc();

0;

[

1;

val (val), y(rand()) {}

}i

int cnt (Nodex n) { return n ? n->c : 0; }

void Node::recalc() { ¢ = cnt(l) + cnt(r) + 1; }
template<class F> void each (Nodex n, F f) {

if (n)
}

{ each(n->1, f); f(n->val); each(n->r, £f); }

pair<Nodex, Node*> split (Nodex n, int k) {
if (!n) return {};
if (cnt(n->1) >= k) { /
auto pa = split(n->1,
n->1 = pa.second;
n->recalc();
return {pa.first,
} else {
auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k”
n->r = pa.first;
n->recalc();
return {n, pa.second};

"n>val >= k7 for lower_bound(k)
k)i

n};

}

Node* merge (Nodex 1,
if (!1) return r;
if (!r) return 1;
if (1->y > r->y) {
1->r = merge (l->r,
l->recalc();
return 1;

} else {
r->1 = merge(l,
r->recalc();
return r;

Node* r) {

r);

r->1);

}

Node* ins (Nodex t, Node* n,
auto pa = split(t, pos);
return merge (merge (pa.first,

int pos) {

n), pa.second);

}

// Ezample application: move the range [l, r) to index k

void move (Nodex*& t, int 1, int r, int k) {
Node =*a, x*b, =*c;
tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
if (k <= 1) t = merge(ins(a, b, k), c);
else t = merge(a, ins(c, b, k - r));

Matrix LineContainer Treap FenwickTree FenwickTree2d RMQ 4

FenwickTree.h

Description: Computes partial sums a[0] + a[l] + ... + a[pos - 1], and
updates single elements ali], taking the difference between the old and new
value.

Time: Both operations are O (log N). c62fac. 22 lines

struct FT {
vector<ll> s;
FT (int n) s(n) {}
void update (int pos,

11 dif) { // a[pos] += dif

for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;
}
11 query (int pos) { // sum of wvalues in [0, pos)
11 res = 0;
for (; pos > 0; pos &= pos - 1) res += s[pos-1];
return res;
}

{// min pos st sum of [0, pos] >= sum
or —1 if empty sum is.

int lower_bound(ll sum)
// Returns n if no sum is >= sum,
if (sum <= 0) return -1;

int pos = 0;
for (int pw = 1 << 25; pw; pw >>= 1) {
if (pos + pw <= sz(s) && s[pos + pw-1] < sum)
pos += pw, sum -= s[pos-1];
}
return pos;
}

}i

FenwickTree2d.h

Description: Computes sums ali,j] for all i<I, j<J, and increases single ele-
ments afi,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).

Time: O (log2 N). (Use persistent segment trees for O (log N).)

"FenwickTree.h" 157f07, 22 lines

struct FT2 {
vector<vi> ys;
FT2 (int limx)

vector<FT> ft;
ys (limx) {}

void fakeUpdate (int x, int y) {
for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
}
void init () {
for (vis v ys) sort(all(v)), ft.emplace_back(sz(v));
}
int ind(int x, int y) {
return (int) (lower_bound(all(ys[x]), y) — ys[x].begin()); }
void update (int x, int y, 11 dif) {
for (; x < sz(ys); x |=x + 1)
ft [x] .update (ind(x, y), dif);
}
11 query(int x, int y) {
11 sum = 0;
for (; x; x &= x - 1)
sum += ft[x-1].query(ind(x-1, y));
return sum;
}
}i

RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V]a
+ 1], ... V[b - 1]) in constant time.

Usage: RMQ rmqg(values) ;

rmqg.query (inclusive, exclusive);

Time: O (|V|log|V|+ Q) 51032, 16 lines

template<class T>
struct RMQ {
vector<vector<T>> jmp;

RMQ (const vector<T>& V) Jmp (1, V) {

UL

=

}
Yi

stack.py
for (int pw = 1, k = 1; pw * 2 <= sz (V); pw *= 2, ++k)
Jmp.emplace_back (sz (V) - pw x 2 + 1);
))

rep (3,0, sz (jmp[k]

jmp (k] [J] = min(Jmp(k - 1]1[3J], Jmp[k - 1][J + pwl);
}
query (int a, int b) {
assert(a < b); // or return inf if a =1»
int dep = 31 - __builtin_clz(b - a);

return min (jmp[dep] [a], Jjmp[dep][b - (1 << dep)]);

MoQueries.h
Description: Answer interval or tree path queries by finding an approxi-
mate TSP through the queries, and moving from one query to the next by
adding/removing points at the ends. If values are on tree edges, change step
to add/remove the edge (a, c) and remove the initial add call (but keep in).

Tim,

e: O UVxﬂj)

{

al2efd, 49 lines

Numerical (4)

void add(int ind,
void del (int ind,

int

int end) {
int end) { } // remove afind]

calc() { } /7'conun¢e current answer

vi mo (vector<pii> Q) {

} // add afind] (end = 0 or 1)

int L = 0, R = 0, blk = 350; // ~N/sqrt(Q)
vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second * - (x.first/blk & 1))
iota(all(s), 0);
sort (all(s), [&](int s, int t){ return K(Q[s]) < K(Q[tl); });
for (int gi : s) {
pii g = Qlgil;
while (L > g.first) add(--L, 0);
while (R < g.second) add(R++, 1);
while (L < g.first) del(L++, 0);
while (R > g.second) del(--R, 1);
res[gi] = calc();
}
return res;
}
vi moTree (vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
int N = sz(ed), pos[2] = {}, blk = 350; // ~N/sqrt(Q)
vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
add (0, 0), in[0] = 1;
auto dfs = [&] (int x, int p, int dep, auto& f) -> void {
par[x] = p;
L[x] = N;
if (dep) I[x] = N++;
for (int y : ed[x]) if (v != p) f(y, x, !dep, £f);
if (!dep) I[x] = N++;
R[x] = Nj;
}i
dfs (root, -1, 0, dfs);
#define K(x) pii(I[x([0]] / blk, I[x[1]] ~ —-(I[x[0]] / blk & 1)
iota(all(s), 0);
sort(all(s), [&] (int s, int t){ return K(Q[s]) < K(Q[tl); });
for (int gi s) rep(end,0,2) {
int &a = pos[end], b = Q[gil([end], 1 = 0;
#define step(c) { if (in[c]) { del(a, end); infa]l = 0; } \
else { add(c, end); in[c] = 1; } a = c; }
while (! (L[b] <= L[a] && R[a] <= R[b])
I[i++] = b, b = par[b];
while (a != b) step(parlal);
while (i--) step(I[i]);
if (end) res[gi] = calc();

}

return res;

4.1 Polynomials and recurrences
PolyBase.h

Description: A FFT based Polynomial class.
"../number-theory/ModularArithmetic.h", "FastFourierTransform.h",

"FastFourierTransformMod.h", "NumberTheoreticTransform.h" 499a15, 35 lines

typedef Mod num;

typedef vector<num> poly;

poly &operator+=(poly &a, const poly &b) {
a.resize(max(sz(a), sz(b)));
rep(i, 0, sz (b)) ali] alil
return a;

}

poly &operator—=
a.resize (max(sz
rep(i, O,
return a;

}

+ blil;

(poly &a, const poly &b) {
(a), sz(b)));
sz (b)) alil ali]

- bli];

poly &operator*=(poly &a, const poly &b) {
if (sz(a) + sz(b) < 100){
poly res(sz(a) + sz (b) 1);
rep(i,0,sz(a)) rep(j,0,sz (b))
res[i + j] = (res[i + j] + al[i]l = b[jl);
return (a res);

}
// auto res = convModkmod>(vi(all(a)), vl(all(b)));

auto res = conv(vl(all(a)), vli(all(b)));
return (a = poly(all(res)));

}

poly operatorx (poly a, const num b) {
poly c = a;
trav(i, c) 1 =1 » b;
return c;

}

#define OP (o, oe) \

poly operator o(poly a, poly b) { \
poly ¢ a; \

return c o##= b; \

}
OP (%,

x*=) OP(+, +=) OP (-, —-=);

PolyInverse.h
Description: A FFT based Polynomial class.

"PolyBase.h" 703c16, 7 lines

poly modK (poly a, int k) { return {a.begin(), a.begin() + min(k
, sz(a))};)
poly inverse (poly A) {
poly B = poly({num(1l) / A[0]});
while (sz(B) < sz (A))
B = modK(B * (poly({num(2)}) - modK(A, 2xsz(B)) % B), 2 =*
sz (B));
return modK (B, sz (A));

}
PolyMod.h

Description: A FFT based Polynomial class.

"PolyBase.h", "PolyInverse.h" 264551, 20 lines

poly &operator/=(poly &a, poly b) {

if (sz(a) < sz (b))
return a {};

int s sz (a) - sz(b) + 1;
reverse(all(a)), reverse(all(b));
a.resize(s), b.resize(s);
a a * inverse(b);
a.resize(s), reverse(all(a));

MoQueries PolyBase PolyInverse PolyMod PolyIntegDeriv PolyLogExp PolyPow

return a;

}

OP(/, /=)

poly &operator$=(poly &a, poly &b) {
if (sz(a) < sz (b))

return a;

poly ¢ = (a / b) x b;
a.resize(sz(b) - 1);
rep(i, 0, sz(a)) ali] = al[i] - c[i];
return a;

}

OP (%, %=)

PolyIntegDeriv.h

Description: A FFT based Polynomial class.

"PolyBase.h"

803fd5, 14 lines

poly deriv(poly a) {
if (a.empty()
poly b(sz(a) - 1);
rep(i, 1, sz(a)) bl[i
return b;

}

poly integr (poly a) {
if (a.empty ()
poly b(sz(a) + 1);
b[l] num(1l);
rep(i, 2, sz(
rep(i, 1 ,sz(
return b;

[i]
[i]

))

b b
b)) b

PolyLogExp.h

return {};

- 1] = a[i]

return {0};

* num(i);

= b[mod%i] +«Mod (-mod/i+mod) ;

afi-1] » b[i];

Description: A FFT based Polynomial class.

"PolyBase.h", "PolyInverse.h",

"PolyIntegDeriv.h"

83ea75, 14 lines

poly log(poly a) {

return modK (integr (deriv (a)

}
poly exp(poly a) {
poly b(l, num(1));
if (a.empty ()
return b;
while (sz(b) < sz
b.resize(sz (b)
b = (poly ({num
b.resize(sz (b)
}

return modK (b,

N~k —~
=

))

sz (a

PolyPow.h

(a, sz (b)

7

Description: A FFT based Polynomial class.

"PolyBase.h", "PolyLogExp.h"

* inverse (a

)

), sz(a));

- log(b));

f0005¢c, 13 lines

~

poly pow(poly a, 11 m) {
int p = 0, n = sz(a);
while (p < sz(a) && al[pl.v == 0)
t+pi
if (11 (m)*p >= sz (a)) return poly(sz(a));
num j = alpl;
a = {a.begin() + p, a.end()};
a =a * (num(l) / J);
a.resize(n);
auto res = exp(log(a) * num(m) * (7

res.insert (res.begin(),

return {res.begin(),

)
pxm, 0);
res.begin()+n};

m) ;

UL stack.py PolyInterpolate PolyEvaluate PolyRoots BerlekampMassey LinearRecurrence InterpolateFast Simplex 6

PolyInterpolate.h

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial
p that passes through them: p(z) = a[0] * ° + ... + a[n — 1] x z™ 1.

Time: O (nlog®n)

"PolyBase.h", "PolyIntegDeriv.h", "PolyEvaluate.h" b911f5, 11 lines

poly interp(vector<num> x, vector<num> y) {
int n=sz(x);
vector<poly> up (nx2);

rep(i,0,n) upl[i+n] = poly ({num(0)-x[i], num(1l)});

for (int i=n-1; i>0;i--) up[i] = up(2+i]xup[2+i+1];
vector<num> a = eval (deriv(up[l]), x);

vector<poly> down (2%n);

rep(i,0,n) down[i+n] = poly ({y[il]*(num(1)/a[i])});

for(int i=n-1;i>0;i--) down[i] = down[ix2] % up[i*x2+1] + down

[i%2+1] % up[i*2];
return down[1l];

PolyEvaluate.h

Description: Multi-point evaluation. Evaluates a given polynomial A at
A(wo), - A(zp).

Time: O (nlog? n)

"PolyBase.h", "PolyMod.h" dc2cdf, 14 lines

vector<num> eval (const poly &a, const vector<num> &x) {
int n = sz (x);
if (!n) return {};
vector<poly> up(2 * n);

rep(i, 0, n) upl[i + n] = poly({num(0) - x[i], 1});
for (int i = n - 1; i > 0; i--)
up[i] = upl[2 % 1] » up[2 « 1 + 1];
vector<poly> down (2 * n);
down[l] = a % upll];
rep(i, 2, 2 * n) down[i] = down[i / 2] % upl[il];
vector<num> y(n);
rep(i, 0, n) y[i] = down[i + n][0];
return y;

PolyRoots.h

Description: Finds the real roots to a polynomial.

Usage: polyRoots ({{2,-3,1}},-1e9,1e9) // solve x2-3x+2 = 0
Time: O (n®log(1/¢))

"Polynomial.h" b00bfe, 23 lines

vector<double> polyRoots (Poly p, double xmin, double xmax) {
if (sz(p.a) == 2) { return {-p.a[0]/p.al[ll}; }
vector<double> ret;
Poly der = p;
der.diff ();
auto dr = polyRoots (der, xmin, xmax);
dr.push_back (xmin-1) ;
dr.push_back (xmax+1) ;
sort (all(dr));
rep (i, 0,sz(dr)-1
double 1 = dr
bool sign = >
if (sign (>
rep (it, 0,6 // while (h— | > 1e—8)
double m 1 +h /2, £f=pm;
if ((f <= 0) ~ sign) 1 = m;
else h = m;
}
ret.push_back ((1 + h) / 2);

~

)) A
i

}
}

return ret;

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first
2n terms of the recurrence. Useful for guessing linear recurrences after brute-
forcing the first terms. Should work on any field, but numerical stability for
floats is not guaranteed. Output will have size < n.

Usage: berlekampMassey ({0, 1, 1, 3, 5, 11}) // {1, 2}

Time: O (N?)

"../number—theory/ModPow.h" 96548b, 20 lines

vector<ll> berlekampMassey (vector<ll> s) {

int n = sz(s), L = 0, m = 0;
vector<ll> C(n), B(n), T;
C[0] = B[0] = 1;

11 b = 1;

rep(i,0,n) { ++m;
11 d = s[i] % mod;
rep(j,1,L+1) d = (d + C[J] » s[i - J]) % mod;
if (!d) continue;
T = C; 11 coef = d x modpow (b, mod-2) % mod;
rep(Jj,m,n) C[3] = (C[J] - coef * B[J - m]) % mod;
if (2 * L > i) continue;
L=1+1-1; B=T; b=4d; m=0;

}

C.resize(L + 1); C.erase(C.begin());
for (l11l& x : C) x = (mod - x) % mod;
return C;

}

LinearRecurrence.h

Description: Generates the k’th term of an mn-order linear recurrence
S[i] = 32, Sli — j — 1]tr[j], given S[0... > n — 1] and tr[0...n — 1]. Faster
than matrix multiplication. Useful together with Berlekamp—Massey.
Usage: linearRec ({0, 1}, {1, 1}, k) // k’th Fibonacci number

o 2
Time: O (n®logk) fdedd4, 26 lines

typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
int n = sz (tr);

auto combine = [&] (Poly a, Poly b) {
Poly res(n x 2 + 1);
rep(i, 0,n+l) rep(3j,0,n+l)

res[i + j] = (res[i + J] + alil * b[3]) % mod;
for (int 1 = 2 * n; i > n; --i) rep(j,0,n)
res[i - 1 - j] = (res[i - 1 - j] + res[i] % tr([j]) % mod;

res.resize(n + 1);
return res;
}i

Poly pol(n + 1), e(pol);
pol[0] = e[l] = 1;

for (++k; k; k /= 2) {
if (k % 2) pol = combine(pol, e);

e = combine (e, e);
}
11 res = 0;
rep(i,0,n) res = (res + pol[i + 1] % S[i]) % mod;
return res;

}

InterpolateFast.h
Description: Find the value of 3™, i* modulo 10° + 7.

Time: O (n) d31fca, 33 lines

int interpolate (int x, int k, bool bf = false) {
if (k == 0) return x;

// find 1"k + 2"k + ... + z"k
// (k+1) degree polynomial —> (k+2) points

if (x <=k + 1 || bf) {
int s = 0;
for (int i = 1; i <= x; 1 ++) {
s = (s + gpow(i, k)) % mod;
}
return s;
}

vector<int> pre(k + 2), suf(k + 2), inv(k + 2);
inv([0] = 1;

pre[0] = x;

suf(k + 1] = x - (k + 1);

for (int 1 = 1; i <= k; 1 ++) prel[i] = pre[i - 1] * (x - 1) %
mod; //numerator prefiz product

for (int i = k; i >= 1; 1 —-) suf[i] = suffi + 1] * (x - i) %
mod; //mumerator suffiz product

for (int 1 = 1; i <= k + 1; i ++) inv[i] = inv[i - 1] % rv (i)
$ mod; // denominator factorial

int ans = 0;

int yi = 0; // 0°k 4+~ 1"k
int num, denom;

for (int 1 = 0; 1 <= k + 1; 1 ++) {
yi = (yi + gpow(i, k)) % mod; // interpolate point: (i, yi)
if (i == 0) num = suf[l];
else if (i == k + 1) num = prel[k];
else num = pre[i - 1] % suf[i + 1] % mod; // numerator
denom = inv[i] % inv[k + 1 - i] % mod; // denominator
if ((1i + k) & 1) ans += (yi » num % mod) % denom % mod; //
(—1)"(i—deg) however deg tis k+1 here so :)
else ans -= (yi * num % mod) * denom % mod;
ans = (ans % mod + mod) % mod;
}
return ans;

}

4.2 Optimization
Simplex.h

Description: Solves a general linear maximization problem: maximize ¢tz
subject to Az < b, x > 0. Returns -inf if there is no solution, inf if there
are arbitrarily good solutions, or the maximum value of ¢? z otherwise. The
input vector is set to an optimal z (or in the unbounded case, an arbitrary
solution fulfilling the constraints). Numerical stability is not guaranteed. For
better performance, define variables such that = 0 is viable.

Usage: vvd & = {{1,-1}, {-1,1}, {-1,-2}};

vd b = {1,1,-4}, ¢ = {-1,-1}, x;

T val = LPSolver (A, b, c).solve(x);

Time: O (NM x #pivots), where a pivot may be e.g. an edge relaxation.

e
O (2™) in the general case. 288530, 68 lines

typedef double T; // long double, Rational, double + modkP>...
typedef vector<T> vd;
typedef vector<vd> vvd;

const T eps = le-8, inf = 1/.0;
#define MP make_pair
#define 1tj(X) if(s == -1 || MP(X[J],N[J]) < MP(X[s],N[s])) s=]

struct LPSolver {
int m, n;
vi N, B;
vvd D;

LPSolver (const vvd& A, const vd& b, const vd& c)

m(sz (b)), n(sz(c)), N(n+l), B(m), D(m+2, vd(n+2)) {
rep(i,0,m) rep(j,0,n) D[i][]j] = A[i][]];
rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
rep(3,0,n) { N[3] = J; DImlI[J] = -cl[3]; }
N[n] = -1; D[m+1][n] = 1;

Ul stack.py

}
void pivot (int r, int s) {
T xa = D[r].data(), inv =1 / al[s];
rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
T *b = D[i].data(), inv2 = b[s] = inv;
rep (3, 0,n+2) b[3j] -= al[j] * inv2;
bls] = als] » inv2;
}
rep(j,0,n+2) if (j != s) D[r][j] »= inv;
rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
D[r][s] = inv;
swap (B[r], N[s]);
}
bool simplex (int phase) {
int x = m + phase - 1;
for (;;) {
int s = -1;
rep(3,0,n+l) if (N[j] != -phase) 1t3(D[x]);
if (D[x][s] >= -eps) return true;
int r = -1;
rep(i,0,m) {
if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / D[i]1[s], BI[i]
< MP(D[r][n+l1] / D[r][s], Blr])) r = i;
}
if (r == -1) return false;
pivot (r, s);

}

T solve(vd &x) {
int r = 0;

rep(i,1,m) if (D[i][n+1] < D[r][n+l]) r = 1i;
if (D[r][n+l] < -eps) {
pivot (r, n);
if (!simplex(2) || D[m+l] [n+l] < -eps) return -inf;
rep(i,0,m) if (B[i] == -1) {
int s = 0;
rep(j,1,n+l) 1tj(D[i]);
pivot (i, s);
}
}
bool ok = simplex(l); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[1]] = D[1i] [n+1];
return ok ? D[m] [n+1] inf;

}
Yi

4.3 Matrices

Determinant.h
Description: Calculates determinant of a matrix. Destroys the matrix.

N 3
Time: O (N?) bd5cec, 15 lines

}

IntDeterminant.h
Description: Calculates determinant using modular arithmetics.
can also be removed to get a pure-integer version.
Time: O (N?)

Modulos

3313dc, 18 lines

double det (vector<vector<double>>& a) {
int n = sz(a); double res = 1;
rep(i,0,n) {
int b = i;

rep(j,i+l,n) if (fabs(al[jl[i]) > fabs(al[bl[i])) b = J;
if (i !'= b) swap(ali], albl), res x= -1;
res *= al[i][i];
if (res == 0) return 0;
rep(j,i+1l,n) {
double v = al[jl[i] / alil[i];
if (v !'= 0) rep(k,i+l,n) al[jl[k] -= v % a[i][k];
}

}

return res;

const 11 mod = 12345;

11 det (vector<vector<ll>>& a) {
int n = sz(a); 11 ans = 1;
rep(i,0,n) {

rep(j,i+1l,n) {

while (al[j][i] != 0) { // gcd step
11 t = alill(il / aljllil;
if (t) rep(k,i,n)
alil[k] = (alil[k] - aljl[k] = t) % mod
swap(alil, al3l);
ans *= -1;
}
}
ans = ans * al[i][1] % mod;
if (!ans) return 0;
}
return (ans + mod) % mod;

}

SolveLinear.h
Description: Solves A x x = b. If there are multiple solutions, an arbitrary
one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost.

= 2
Time: O (n?m) 44c9ab, 38 lines

typedef vector<double> vd;

const double eps = le-12;
int solvelLinear (vector<vd>& A, vdé& b, vds x) {
int n = sz(A), m = sz(x), rank = 0, br, bc;
if (n) assert(sz(A[0]) == m);
vi col(m); iota(all(col), 0);
rep (i, 0,n) {
double v, bv = 0;
rep(r,i,n) rep(c,i,m)
if ((v = fabs(A[r][cl)) > bv)
br = r, bc = ¢, bv = v;
if (bv <= eps) {
rep(j,i,n) if (fabs(b[j]) > eps) return -1;
break;
}
swap (A[i], A[brl);
swap (b[i], b(lbr]);
swap (col([i], col[bc])
rep(3j,0,n) SWBP(A[1011, Al3]lbcl);
bv = 1/A[1][i];
rep(j,iﬂ,n) {
double fac = A[j][1] * bv;
b[j] -= fac * b[i];
rep (k,i+1,m) A[Jj][k] —-= facxA[i] [k];
}
rank++;
}
x.assign(m, 0);
for (int i = rank; i--;) {
b[i] /= A[i][4i];
x[col[i]] = b[i];
rep(J,0,1) b3l -= A[JI[1i] = b[i];
}
return rank; // (multiple solutions if rank < m)
}

Determinant IntDeterminant SolveLinear SolveLinear2 SolveLinearBinary MatrixInverse 7

SolveLinear2.h
Description: To get all uniquely determined values of z back from Solve-
Linear, make the following changes:

"SolveLinear.h" 08e495, 7 lines

rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)

// ... then at the end:

x.assign(m, undefined);

rep (i, 0, rank) {
rep(j,rank,m) if
x[col[i]] = b[i]

fail:; }

(fabs (A[11[31)
/ A[i1[4i1;

> eps) goto fail;

SolveLinearBinary.h
Description: Solves Az = b over Fa. If there are multiple solutions, one is
returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b.

P 2
Time: O (n’m) fa2d7a, 34 lines

typedef bitset<1000> bs;

int solvelinear (vector<bs>& A, vi& b, bs& x, int m) {
int n = sz(A), rank = 0, br;
assert (m <= sz (x));
vi col(m); iota(all(col), 0);
rep(i,0,n) {
for (br=i; br<n; ++br) if (A[br].any()) break;
if (br == n) {
rep(j,i,n) if(b[j]) return -1;
break;
}
int bc = (int)A[br]._Find_next (i-1);
swap (A[i1], A[br]);
swap (b[1], [brl);
swap (col[i], col[bcl);
rep(J,0,n) if (A[J1[i] != A[J][bc]l) {
A[j].flip(1); A[J].flip(bc);
}
p(j,i+l,n) if (A[JI[1]) {
b[jl *= blil;
A[J] ~= A[i];
}
rank++;
}
x = bs();
for (int i = rank; i--;) {
if (!b[i]) continue;
x[col[i]] = 1;
rep(3,0,1) b[J] = A[JI[i];
}

return rank; // (multiple solutions if rank < m)
}

MatrixInverse.h
Description: Invert matrix A. Returns rank; result is stored in A unless
singular (rank < n). Can easily be extended to prime moduli; for prime
powers, repeatedly set A71 = A71(2I — AA™1) (mod p*) where A~
as the inverse of A mod p, and k is doubled in each step.
Time: O (n3)

L starts

ebfff6, 35 lines

int matInv(vector<vector<double>>& A) {

int n = sz(A); vi col(n);
vector<vector<double>> tmp (n, vector<double>(n));
rep(i,0,n) tmpl[i][i] = 1, col[i] = i;
rep(i,0,n) {
int r = i, ¢ = i;
rep(j,i,n) rep(k,i,n)
if (fabs(A[]][k]) > fabs(A[r][c]))
r =13, c=k;

UL stack.py MatrixInverse-mod FastFourierTransform FastFourierTransformMod NumberTheoreticTransform FastSubsetTransform 8

if (fabs(A[r][c]) < le-12) return i; Alcol[i]][col[]J]] = tmp[i]l[J] % mod + (tmp[i][J] < O ? mod int j = -1 & (n - 1);
Ali].swap(A[r]); tmp[i].swap(tmp[r]); 2 0); outl[j] = (L[i] + conj(L([J])) = R[1i] / (2.0 = n);
rep(j,0,n) return n; outs[j] = (L[i] - conj(L[31)) = R[i] / (2.0 n) / 1i;
swap (A[J][1], A[J][c]l), swap(tmp[j][i], tmp[]][c]); } }
swap (col[i], col[c]); fft (outl), fft(outs);
double = A[i i]; . i, 0
re;(j,i\J:l,n) [J{-] e 4'4 Fourler tranSformS reiil;v,iziie(i;;l{(outl[i])+.5), cv = 11 (imag(outs[i])+.5);
double f = A[j][1] / v; FastFourier’I‘ransform.h 11 bv = 11l (imag(outl[i])+.5) + 1ll(real(outs[i])+.5);
A[3101] = 0; Description: fft(a) computes f(k) = > a[z]exp(2ni - kx/N) for all k. res[i] = ((av % M » cut + bv) % M x cut + cv) % M;
rep (k, i+1,n) A[J:] [k] -= £xA[1i] .[k]; N must be a power of 2. Useful for convolution: conv(a, b) = c, where }
rep(k,0,n) tmp[J][k] -= fxtmp[i][k]; clz] = 3 ali]blxz — i]. For convolution of complex numbers or more than two return res;
¥ o o vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT | }
rep (j.,1+1,n) A[}] [].] /= Vi back. Rounding is safe if (3° a? + be) log, N < 9- 1014 (in practice 1016,
rep (],‘ 0, E) 11:«mp [i1031 /= v; hifgher for random inp}lts). Otherwise, use NTT/FFTMzozd‘ NumberTheoreticTransform.h
) AMLTIL) = 15 Time: O (Nlog N) with N = |A| +|B| (~1s for N =2%%) .. | Description: ntt(a) computes f(k) = >, alz]g®® for all k, where g =
typedef complex<double> C; root("°4=D/N N must be a power of 2. Useful for convolution modulo spe-
for (int i = n-1; 1 > 0; --i) rep(J,0,1) { typedef complex<long double> Cd; cific nice primes of the form 2%b + 1, where the convolution result has size
double v = A[j][i]; typedef vector<double> vd; at most 2%. ‘For arl?itrary modulo, see FFT_Mod. conv(a,_ b) = ¢, w}_lere
rep(k,0,n) tmp[j][k] —-= vstmp[i] [k]; void fft (vector<C>& a) { clz] = Y a[i]blx — i]. For manual convolution: NTT the inputs, multiply
} int n = sz(a), L = 31 - _ _builtin_clz(n); pointwise, divide by n, reverse(startJrl, end), NTT back. Inputs must be in
static vector<complex<long double>> R(2, 1); [0, mod).
rep(i,0,n) rep(j,0,n) Alcol[i]l][col[j]] = tmp[i][]]; static vector<C> rt(2, 1); // (" 10% faster if double) Time: O (N log N)
return n; for (static int k = 2; k < n; k *»= 2) { . ./number—theory/ModPow.h" ced03d, 33 lines
3 R.resize(n); rt.resize(n); const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
auto x = polar(1.0L, acos(-1.0L) / k); // For p < 2780 there is also e.g. 5 << 25, 7T<< 26, 479 << 21
rep (i, k,2xk) rt[i] = R[i] = i&l ? R[1/2] = x : R[1/2]; // and 483 << 21 (same root). The last two are > 10"9.
¥ typedef vector<ll> vl;
MatrixInverse-mod.h vi rev(n); void ntt (vl sa) {
Description: Invert matrix A modulo a prime. Returns rank; result is rep(i,0,n) rev[i] = (revli /21| A& 1) <<L) /2 int n = sz(a), L = 31 - __builtin clz(n);
stored in A unless singular (rank < n). For prime powers, repeatedly set Eep(l,_o,n})(ifl (lk< rev[}l(])is\gap(a[l] , alreviill); static Vl_rt_(zr 1);
A? :Ail(QIfAAfl) (mod pk) where A7 starts as the inverse of A mod or (lm_: L < ni *=) . for (stat?lc int k =2, s = 2; k <nj kx=2, st¥) {
p, and k is doubled in each step for (imt i = 0; 1 <nj i +=2 % k) rep(3,0,k) { rt.resize(n);
’I:ime' O(ng) ’ C z = rt[j+k] * ali+j+k]; // (25% faster if hand—rolled) 11 z[] = {1, modpow(root, mod >> s)};
"../number-theory/ModPow.h" a6f68f, 36 lines ZH : §]++£]Zf ath w3l = } rep (i k, 2xk) rt(i] = rtli / 2] « z[i & 1] & mod;
int_: matIEv(vectc.>r<x./ector<l}>>& A) { } vi rev(n);
int n = sz(A); vi col(n); } rep(i,0,n) rev([i] = (rev[i / 2] | (i & 1) << L) / 2;
vect(ljr<vector<l]l_>>ltmp(n, vectgr<ll}(n)); vd conv (const vds a, const vd& b) { rep(i,0,n) if (i < rev[i]) swap(al[i], alrev[il]);
rep(i,0,n) tmp(i][i] =1, colli] = i; if (a.empty() || b.empty()) retura {}; for (int k = 1; k < n; k »= 2)
) vd res(sz(a) + sz(b) - 1); for (int i = 0; i < n; i += 2 » k) rep(j,0,k) {
re}?(llorlj) .{ L int L = 32 - __builtin_clz(sz(res)), n = 1 << L; 11 z = rt[j + k] * a[i + 7 + k] % mod, &ai = al[i + Jl;
lntﬁfl, c =1) 4 vector<C> in(n), out(n); af[i + j+ k] =ai-z+ (z>ail ? mod : 0);
rep(j,i,n) rep(k,i,n) if (A[JI[k]) { copy (all(a), begin(in)); ai += (ai + z >=mod ? z - mod : z);
r = J; ¢ = k;j goto found; rep(i,0,sz (b)) in[i].imag(b[i]); }
¥ £ft (in); }
return i; for (C& x : in) x *= x; vl conv(const vl &a, comst vl &b) {
found:‘ ‘ rep(i,0,n) out[i] = in[-1 & (n - 1)] - conj(in[i]); if (a.empty() || b.empty()) return {};
Ali].swap(alr]); tmp(i].swap (tmp[rl); L . £ft (out) ; int s = sz(a) + sz(b) - 1, B = 32 - _ builtin_clz(s), n = 1
rep(j,0,n) swap(A[J][i], A[J]l[c]), swap(tmp[]][i], tmp[]][c rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n); << B;
1)) return res; int inv = modpow(n, mod - 2);
swap (col[i], collcl); } vl L(a), R(b), out(n);
11 v = modpow (A[1][1i], mod - 2); L.resize(n), R.resize(n);
rep(Jj,i+1,n) { . ntt (L), ntt(R);
CALSTI4] « v S . FastFourierTransformMod.h 2 P . . .
11 £ = A[J][i] v % mod; rep(i,0,n) out[-i & (n - 1)] = (11)L[i] * R[i] % mod = inv %
A[3][i] = O; Description: Higher precision FFT, can be used for convolutions modulo pid, é ° °
; > ; ! ! mod:
rep(k,i+1,n) A[j1[k] = (A[JI[k] - £xA[i][k]) % mod; é;,:b}lltra)rylmtcgers as lgng asEON logdz)N -mod < 8.6 -10'* (in practice 106 or Nt (ou(;)"
rep(k,0,n) tmpl[j][k] = (tmp[j][k] — fxtmpl[i] [k]) % mod; igher). Inputs must be in [0, mod). : . . .
} ” ' Time: O (NlogN), where N = |A| + |B| (twice as slow as NTT or FFT) return {out.begin(), out.begin() + s};
rep(j,i+l,n) A[i]1[3] = A[1]1[3] * v % mod; "FastFourierTransform.h" b82773, 22 lines ¥
rep(3,0,n) tmpl[i][j] = tmp[i][j] » v % mod; typedef vector<ll> vl;
A[i][i] = 1; template<int M> vl convMod (const vl &a, const vl &b) { FastSubsetTransform.h
} if (a.empty() || b.empty()) return {}; Description: Transform to a basis with fast convolutions of the form
vl res(sz(a) + sz(b) - 1); clz] = Z B alz] - bly], where @ is one of AND, OR, XOR. The size
fo:ll':l(int i[:,]?f]l; i > 0; ——-i) rep(3j,0,1i) { int B=3(2:—_1?u)iltir;_<):lz(sz(ie)s)), njl(<)<B, cut=int (sqrt (M)); of @ must gg;®pyower of two.
v = A[jJ i]; vector<C> L(n), R(n), outs(n), outl(n); Time: O (N log N
rep(k,0,n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) $ mod; rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)ali] % cut); m (Vlog N) 464cf3, 16 lines
} rep(i,0,sz (b)) R[1i] = C((int)b[i] / cut, (int)b[i] % cut); void FST(vi& a, bool inv) {
fft (L), fft(R); for (int n = sz (a), step = 1; step < n; step %= 2) {
rep(i,0,n) rep(3j,0,n) rep (i, 0,n) { for (int i = 0; 1 < n; 1 += 2 % step) rep(j,i,i+step) {

Ul stack.py

int &u = a[j], &v =
inv ? pii(v - u, u

alj + stepl; tie(u, v) =
) pii(v, u + v); // AND
)

inv ? pii(v, u - v pii(u + v, u; // OR
pii(u + v, u - v); // XOR
}
}
if (inv) for (int& x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
FST(a, 0); FST(b, 0);
rep(i,0,sz(a)) alil »= b[i];
FST(a, 1); return a;
}

Number theory (5)

5.1 Modular arithmetic
ModularArithmetic.h

Description: Operators for modular arithmetic. You need to set mod to
some number first and then you can use the structure.

3318e2, 18 lines

const 11 mod = 17; // change to something else

struct Mod {

11 v;
Mod () v(0) {}
Mod (11 wvv) v (vv mod) {}

11 ans = 1, b

Mod operator+ (Mod b) { return Mod((v + b.v) % mod); }
Mod operator- (Mod b) { return Mod(v - b.v + mod); }
Mod operatorx (Mod b) { return Mod(v * b.v); }
Mod operator/ (Mod b) { return *this * invert(b); }
Mod invert (Mod a) { return a” (mod-2); }
Mod operator” (11 e)
=
for (; e; b =b * , e /= 2)
if (e & 1) ans = ans * b % mod;

return ans;

}
explicit operator 11 ()

Yi

const { return v; }

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod

and that mod is a prime. 6£684f. 3 lines

const 11 mod = 1000000007, LIM = 200000;
1l inv = new 11[LIM] - 1; inv[1l] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;

ModPow.h

const 11 mod =

b83e45, 8 lines

1000000007; // faster if comst

11 modpow (1l b, 11 e) {
11 ans = 1;
for (; e; b =Db * b % mod, e /= 2)
if (e & 1) ns = ans * b % mod;

return ans;

}

ModLog.h
Description: Returns the smallest z > 0 s.t. a® = b (mod m), or —1 if no
such z exists. modLog(a,1,m) can be used to calculate the order of a.

Time: O (v/m) c040b8, 11 lines

11 modLog (1l a, 11 b, 11 m) {
11l n = (11) sgrt(m) + 1, e=1, £ =1, 3 =1;
unordered_map<ll, 11> A;

ModularArithmetic ModInverse ModPow ModLog ModSum ModMulLL ModSqrt

while (j <= n && (e = f =e x a $m !=Db %$m
Ale » b % m] = j++;
(e == %$ m) return j;
(__gcd(m, e) == __gcd(m, b))
rep(i,2,n+2) if (A.count (e =
return n x i - Afe];
return -1;

}

ModSum.h

Description: Sums of mod’ed arithmetic progressions.
modsum(to, ¢, k, m) = Z:igl (ki +c)%m. divsum is similar but for
floored division.

Time: log(m), with a large constant.

if
if
e x £ %

5c5bce5, 16 lines

typedef unsigned long long ull;

ull sumsqg(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull ¢, ull k, ull m) {

ull res = k / m * sumsqg(to) + ¢ / m * to;

$= m; C %= m;

if ('k) return res;

ull to2 = (to » k + ¢c) / m;

return res + (to - 1) x to2 - divsum(to2, m-1 - ¢, m, k);
}
11 modsum(ull to, 11 ¢, 11 k, 11 m) {

c = ((c $m +m % m;

k= ((k $m) +m) % m;

return to » ¢ + k » sumsqg(to) - m * divsum(to, c, k, m);

}

ModMulLL.h
Description: Calculate a-b mod ¢ (or a® mod c)for0<a,b<c<72: 108,

Time: O (1) for modmul, O (logb) for modpow bbbdsf, 11 lines

typedef unsigned long long ull;

ull modmul (ull a, ull b, ull M) {
11 ret = a * b - M * ull(l.L / M x a * b);
return ret + M x (ret < 0) - M * (ret >= (1l1)M);
}
ull modpow (ull b, ull e, ull mod) {
ull ans = 1;
for (; e; b = modmul (b, b, mod), e /= 2)
if (e & 1) ans = modmul (ans, b, mod);
return ans;
}

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x
s.t. % = a (mod p) (—z gives the other solution).

Time: O (log2 p) worst case, O (logp) for most p

"ModPow.h" 192793, 24 lines
11 sgrt(ll a, 11 p) {

a %= p; if (a < 0) a += p;

if (a == 0) return 0;

assert (modpow (a, (p-1)/2, p) == 1); // else no solution

if (p % 4 == 3) return modpow(a, (p+l)/4, p);

// a*(n+3)/8 or ?A(nJrS’)/S * 2°(n—1)/4 works if p % 8 =—25

11 s =p -1, n=2;
int r = 0, m;
while (s % == 0)
++r, s /= 2;
while (modpow(n, (p - 1) / 2, p) !=p - 1) ++n;
11 x = modpow(a, (s + 1) / 2, p);
11 b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r =m) {
11 t = b;
for (m = 0; m < r && t != 1; ++m)

ShortLucas MillerRabin Factor 9

t=t xt % p;

if (m == 0) return x;

11 gs = modpow(g, 1LL << (r — m - 1), p);
g =9gs *» gs % p;

X = X * gs % p;

b=Db*gs3p;

}

ShortLucas.h

Description: Lucas’ thm: Let n, m be non-negative integers and p a prime.
Write n = nkpk' + ...+ nip+no and m = mkpk + ... + m1ip + mp. Then
(m) = ,’L.“:O (::111) (mod p). fact and invfact must hold pre-computed facto-
rials / inverse factorials, e.g. from ModInverse.h.

Time: O (log, n) 81845f, 10 lines

11 chooseModP (11 n, vi& invfact) {
11 ¢ = 1;
while (n || m) {

1l a=n%p, b=m?%p;

if (a < b) return 0;

c » fact[a] %
p; m /= p;

11 m, int p, vi& fact,

o

c = p * invfact([b] % p * invfactl[a - b] % p;
n /=
}

return c;

}

5.2 Primality
MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to
work for numbers up to 7 - 10'%; for larger numbers, use Python and ex-
tend A randomly.

Time: 7 times the complexity of a’ mod c.

"ModMulLL.h" 60dcdl, 12 lines

bool isPrime(ull n) {

if (n <2 || n% 6 %4 !=1) return (n | 1) == 3;
ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
s = __builtin_ctzll(n-1), d = n >> s;
for (ull a : A) { // * count trailing zeroes
ull p = modpow(a%n, d, n), i = s;
while (p !'= 1 && p !=n -1 && a $ n && i——)
p = modmul (p, p, n);
if (p !'= n-1 && 1 != s) return O;
}
return 1;
}
Factor.h
Description: Pollard-rho randomized factorization algorithm. Returns

prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: O n1/4), less for numbers with small factors.

"ModMulLL.h", "MillerRabin.h" a33cf6, 18 lines
ull pollard(ull n) {
auto £ = [n] (ull x) { return modmul (x, x, n) + 1; };
ull x =0, y =0, t =30, prd =2, i =1, qg;
while (t++ % 40 || __gcd(prd, n) == 1) {
if (x == y) x = ++i, yv = £(x);
if ((g = modmul (prd, max(x,y) - min(x,y), n))) prd = g;
x=fx), v=~1));
}
return _ gcd(prd, n);
}

vector<ull> factor (ull n) {

if (n == 1) return {};

if (isPrime(n)) return {n};

ull x = pollard(n);

auto 1 = factor(x), r = factor(n / x);

Ul stack.py

l.insert(l.end(), all(r));
return 1;

)
5.3 Divisibility
euclid.h

Description: Finds two integers = and y, such that az + by = ged(a, b). If
you just need ged, use the built in __gcd instead. If a and b are coprime, then

z is the inverse of a (mod b). 33bast. 5 lines

11 euclid(ll a, 11 b, 11 &x, 11 &y) {
if (!b) return x =1, y = 0, a;
11 d = euclid(b, a % b, y, x);
return y —= a/b * x, d;

}

CRT.h

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes z such that x = a (mod m), z = b (mod n) If

la] < m and |b| < n, z will obey 0 < z < lcm(m n). Assumes mn < 2%2

Time: log(n)

"euclid.h"

11 crt(ll a,
if (n > m)
11 %, vy,

de6b24, 7 lines

1l m, 11 b, 11 n) {

swap (a, b), swap(m, n);

g = euclld(m, n, x, y);

assert((a - b) % g == 0); // else no solution
x:(bfa)%n*x%n/g*era,

return x < 0 ? x + m/g*n : x;

}

5.3.1 Bézout’s identity
For a #, b # 0, then d = gcd(a, b) is the smallest positive integer
for which there are integer solutions to

ar + by =d

If (z,y) is one solution, then all solutions are given by

T 4+ kb — ka keZ
ged(a,0)"? " ged(a,b))

phiFunction.h
Description: Fuler’s ¢ function is defined as ¢(n) := # of positive integers
< n that are coprime with n. ¢(1) = 1, p prime = ¢(p Y= (p— l)pk_l,
m,n coprlme = ¢(mn) = ¢p(m)p(n). If n = pllpg2 .p*r then ¢(n) =
(p1 — Dyt (pr — VP ¢(n) = n - [T, (1= 1/p).
Y #(d) =71, 30 chcn ged(k,ny=1 K = nd(n)/2,n > 1
Euler’s thm: a,n coprime = a®™ =1 (mod n).
Fermat’s little thm: p prime = a?~ 1 =1 (mod p) Va.

cf7d6d, 8 lines

const int LIM =
int phi[LIM];

5000000;

void calculatePhi () {
rep(i,0,LIM) phi[i] = i&l 2 i : 1/2;
for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
for (int j = i; j < LIM; j += i) phi[j] -= philJj] / i;
}
5.4 Pythagorean Triples

The Pythagorean triples are uniquely generated by
a=k-(m*—n?), b=k-(2mn), c=k-(m*>+n?),

with m > n > 0, k > 0, mLn, and either m or n even.

euclid CRT phiFunction IntPerm multinomial
5.5 Primes

p = 962592769 is such that 22 | p — 1, which may be useful. For

hashing use 970592641 (31-bit number), 31443539979727 (45-bit),
3006703054056749 (52-bit). There are 78498 primes less than
1000 000.

Primitive roots exist modulo any prime power p®, except for
p=2,a > 2, and there are ¢(¢(p®)) many. For p = 2 ,a > 2, the
group Zz. is instead isomorphic to Za X Zga—2.

5.6 Estimates

> ajn d = O(nloglogn).

The number of divisors of n is at most around 100 for n < 5e4,
500 for n < le7, 2000 for n < 1el0, 200000 for n < 1el9.

5.7 Mobius Function
0 n is not square free
p(n) =41
—1 n has odd number of prime factors

n has even number of prime factors

Mobius Inversion:
n)= flde
din

Other useful formulas/forms:
e M(d) =
g(n) =34 f(d) & f(n) =

9(n) = Ficmen F(3]) & f(n) =

Zu

g(n/d)

[n = 1] (very useful)
2 nja i(d/n)g(d)
> cmen H(m)g(| 2])

Combinatorial (6)

6.1 Permutations
6.1.1 Factorial

n|1234 5 6 7 8 9 10
n! | 12624 120 720 5040 40320 362880 3628800
n 11 12 13 14 15 16 17
n! | 4.0e7 4.8e8 6.2e9 8.7¢10 1.3e12 2.1e13 3.6el14

10

6.1.2 Cycles
Let gs(n) be the number of n-permutations whose cycle lengths
all belong to the set S. Then

ng(n)%? = exp <Z ‘i:)

nes

6.1.3 Derangements
Permutations of a set such that none of the elements appear in
their original position.

D(n)=mn-1)(D(n—1)+D(n—-2)) =nDn—-1)4+(-1)" = {%'—‘

6.1.4 Burnside’s lemma
Given a group G of symmetries and a set X, the number of
elements of X up to symmetry equals

P
geG

where X? are the elements fixed by g (g.x = z).

If f(n) counts “configurations” (of some sort) of length n, we can
ignore rotational symmetry using G = Z,, to get

Zf

k\n

n—1

g(n) = %Zf(gcd (n,k))

k=0

o(n/k).

6.2 Partitions and subsets

6.2.1 Partition function
Number of ways of writing n as a sum of positive integers,
disregarding the order of the summands.

p(0)=1,pn)= > (=1)*"'p(n
keZ\{0}
p(n) ~ 0.145/n - exp(2.56/n)

n | 0123456 7 8 9 20 50 100
p(n) | 112357 11 15 22 30 627 ~2e5 ~2e8

6.2.2 Lucas’ Theorem
Let n, m be non-negative integers and p a prime. Write

— k(3k—1)/2)

k k
n| 20 25 30 40 50 100 150 171 n=ngp 4.+ mp +mno and m = mgp” + ... + mip + mo. Then
n j— n;
nl | 2el8 2025 3e32 8ed7 3¢64 9el57 66262 >DBLMAX (m) =TT () (mod p).
IntPerm.h 6.2.3 Binomials
Description: Permutation -> integer conversion. (Not order preserving.) | multinomial.h
Integer -> permutation can use a lookup table. D iobi C ¢ (k1 + -4 kn) > ki)
s escription: Computes = —=
Time: O (n) 044568, 6 lines P P ki, ko, ... kn kilka!.. .kn! a0a312, 6 lines
int permTolInt (vi& v) { 11 multlnomlal(w.& v) |
int use = 0, 1 = 0, r = 0; 11l c=1, m = v.empty() ?2 1 : v[0];
for(int x:v) r = r x ++i + _ _builtin_popcount (use & - (1<<x)), rep(i,1,sz(v)) rep(j,0,v[i])
use |= 1 << x; // (note: minus, not ~!) c=c x ++m / (j+1);

return r;

}

return c;

}

Ul stack.py

6.3 General purpose numbers
6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is B(t) =
Bl0,..]=[1,-%10-%,0,%,..]

27 6 300 427
Sums of powers:

k

Euler-Maclaurin formula for infinite sums:

= (FFT-able).

1 & m+1 1k
1;:%()Bk'(”Jrl)m

D= [fa)de =Y 2 (m)

fm) f(m) | §7m)
2

~ /m f(z)dz + 12 0

+0(f®) (m))

6.3.2 Stirling numbers of the first kind
Number of permutations on n items with k cycles.

c(n,k)=cn—1,k—1)+
Sor_ocn k)itk =z(z+1)...

(n—1)e(n -1,
(z4+n-1)

k), ¢(0,0) =

c(8,k) = 8,0,5040, 13068, 13132, 6769, 1960, 322, 28, 1
¢(n,2)=0,0,1,3,11,50,274,1764, 13068, 109584, . ..

6.3.3 Eulerian numbers

Number of permutations 7 € S,, in which exactly k elements are
greater than the previous element. k j:s s.t. 7(j) > n(j + 1),

k+1jsst w(j) >4, kjsst n(j) > 3.

(k+1—-5"

1

E(nk)=Mn—-k)E(n—1,k—1)+ (k+1)E(n—1,k)
E(n,0)=E(n,n—-1)=1
Bk) = 317 ("

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

S(n,k)=S(n—1,k—1)+kS(n
S(n,1) =S(n,n) =1

1< —

Sk = 5 S0 (!

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n)
For p prime,

1,1,2,5,15,52,203,877,4140, 21147,

B(p™ +n)=mB(n)+ B(n+1)

1K)

(mod p)

BellmanFord MinCostMaxFlow
6.3.6 Labeled unrooted trees

on n vertices: n"?
on k existing trees of size n;: ning - -

with degrees d;: (n —2)!/((dqx — 1)!---

6.3.7 Catalan numbers

.nknk72

(dn — 1))

1 2n\ _ (2n) [2n \ _ (2n)!
n+l\n /) \n n+1 (n+1)In!
Co = 1, Cn+1 = wcn, Cn+1 - Zczcn—z

n+2
Cn=1,1,2,5,14,42,132, 429, 1430, 4862, 16796, 58786, . . .

sub-diagonal monotone paths in an n x n grid.

strings with n pairs of parenthesis, correctly nested.
binary trees with with n + 1 leaves (0 or 2 children).
ordered trees with n + 1 vertices.

ways a convex polygon with n + 2 sides can be cut into
triangles by connecting vertices with straight lines.

e permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals
BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have
negative edge weights. Unreachable nodes get dist = inf; nodes reachable
through negative-weight cycles get dist = -inf. Assumes V2 max Jw;| < ~263,
Time: O (VE)

const 11 inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { 11 dist = inf; int prev = -1; };

830a8f, 23 lines

void bellmanFord(vector<Node>& nodes, vector<kEd>& eds, int s) {

nodes[s].dist = 0;
sort (all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });
int lim = sz(nodes) / 2 + 2; // /8+100 with shuffled vertices
rep(i,0,1im) for (Ed ed : eds) {
Node cur = nodes[ed.a], &dest = nodes[ed.b];
if (abs(cur.dist) == inf) continue;

11 d = cur.dist + ed.w;
if (d < dest.dist) {
dest.prev = ed.a;

dest.dist = (i < lim-1 ? d : —-inf);
}
}
rep(i,0,1im) for (Ed e : eds) {
if (nodes[e.a].dist == -inf)
nodes|[e.b].dist = —-inf;
}
}
7.2 Network flow
MinCostMaxFlow.h
Description: Min-cost max-flow. capli][j] != caplj][i] is allowed; double

edges are not. If costs can be negative, call setpi before maxflow, but note
that negative cost cycles are not supported. To obtain the actual flow, look
at positive values only.

Time: Approximately O (E?) fe85cc

11

81 lines

#include <bits/extc++.h>

const 11 INF = numeric_limits<ll>:
typedef vector<ll> VL;

max () / 4;

struct MCMF {
int N;
vector<vi> ed,
vector<VL> cap,
vi seen;
VL dist, pi;
vector<pii> par;

red;
flow, cost;

MCMF (int N)
N(N), ed(N), red(N),
seen(N), dist(N), pi(N

cap (N, VL(N)),
), par(N) {}
void addEdge (int from, int to, 11 cost) {
this->cap[from] [to] = cap;
this->cost[from] [to] = cost;
ed[from] .push_back (to) ;
red[to] .push_back (from) ;
}

11 cap,

void path (int s)
fill (all (seen),
fill(all(dist),
dist[s] = 0; 1

{
0);
INF) ;
1 di;

__gnu_pbds::
vector<decltype (q) :
g.push ({0, s});

priority_queue<pair<ll, int>> g;
:point_iterator> its(N);

auto relax = [&] (int i, 11 cap, 11 cost, int dir) {
11 val = di - pi[i] + cost;
if (cap && val < dist[i]) {
dist[1i] = val;
par[i] = {s, dir};
if (its[i] == g.end())
else g.modify (its[i],

its[i] = g.push({-dist[i],
{-dist[i], 1i});

pty ()) {
).second' g.pop();
1; di = dist[s] + pils];
for (int i : ed[s] if (!seen([i])

relax (i, cap[s][i] - flow[s][i]
for (int i : red[s]) if (!seen[i]

relax (i, flow[i][s], -cost[i][s

7

)
i , cost[s][i], 1);
])
[1, 0);
}

rep(i,0,N) pi[i

}

] = min(pi[i] + dist([i], INF);

pair<ll, 11> maxflow(int s, int t) {

11 totflow = 0, totcost = 0;
while (path(s), seen[t]) {

11 f1 = INF;

for (int p,r,x = t; tie(p,

fl = min(£fl, r
totflow += f1;

for (int p,r,x

if (r) flowl[p

else flow([x][

x = s;
flow[x

r) = par[x],
? caplpl[x] - flow[p] [x]

= t; tie(p,r) = par(x
1[x] += f1;

pl —= f1;

}

rep (i, 0,N)
return {totflow,

rep(j,0,N) totcost += cost[i][]] » flow[i

totcost};

flow(cap), cost(cap),

i});

x = p)
1lpl)i

1, x = s; x =p)

10317

UL stack.py EdmondsKarp

}

// If some costs can be negative, call this before mazflow:
void setpi(int s) { // (otherwise, leave this out)
fill(all(pi), INF); pils] = 0;
int it = N, ch = 1; 11 v;
while (ch——- && it——)

rep(i,0,N) if (pi[i] != INF)
for (int to : ed[i]) if (cap[i][to])
if ((v = pili] + cost[il[to]) < pilto])
pifto] = v, ch = 1;
assert (it >= 0); // negative cost cycle

}
}i

EdmondsKarp.h
Description: Flow algorithm with guaranteed complexity O(V E?). To get
edge flow values, compare capacities before and after, and take the positive

values only. 482fe0, 35 lines

template<class T> T edmondsKarp (vector<unordered_map<int, T>>&
graph, int source, int sink) {
assert (source != sink);
T flow = 0;
vi par(sz(graph)), g = par;

for (;;) {
fill(all(par), -1);
par[source] = 0;
int ptr = 1;
gl[0] = source;

rep (i, 0,ptr) {
int x = gq[i];

for (auto e : graph[x]) {
if (par[e.first] == -1 && e.second > 0) {

7

par[e.first] = x;
glptr++] = e.first;
if (e.first == sink) goto out;
}
}
}
return flow;
out
T inc = numeric_limits<T>::max();
for (int y = sink; y != source; y = parly])
inc = min(inc, graphlpar[y]]l[yl);
flow += inc;
for (int y = sink; y != source; y = par[yl) {
int p = parlyl;
if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
graph[y] [p] += inc;
}
}
}

Dinic.h

Description: Flow algorithm with complexity O(V ElogU) where U =
max |cap|. O(min(E/2,V?/3)E) if U = 1; O(VVE) for bipartite match-

ing.

Dinic MinCut GlobalMinCut GomoryHu DFSMatching Blossom

vector<vector<Edge>> adj;

Dinic(int n) : 1lvl(n), ptr(n), g(n), adj(n) {}

void addEdge (int a, int b, 11 c, 11 rcap = 0) {
adjla] .push_back ({b, sz (adj[bl), c, c});

adj[b] .push_back ({a, sz(adjla]) - 1, rcap, rcap});
}
11 dfs(int v, int t, 11 f) {
if (v ==t || !'f) return f;
for (int& i = ptr[v]; i < sz(adj([v]); i++) {
Edge& e = adj[v][i];
if (lvl[e.to] == 1lvl[v] + 1)
if (11 p = dfs(e.to, t, min(f, e.c))) {
e.c —= p, adjle.to][e.rev].c += p;
return p;
}
}
return 0O;
}

11 calc(int s, int t) {
11 flow = 0; gq[0] =
rep(L,0,31) do { // znt L=30" maybe faster for random data
lvl = ptr = vi(sz(q));
int gi = 0, ge = 1lvl([s] = 1;
while (gi < ge && !1vl[t]) {
int v = g[gi++];
for (Edge e : adjlv])
if (!lvl[e.to] && e.c >> (30 - L))
glget+] = e.to, 1lvl[e.to] = 1lvl[v] + 1;
}
while (11 p = dfs(s, t, LLONG_MAX)) flow += p;
} while (1lvl[t]);
return flow;
}
bool leftOfMinCut (int a) { return lvl(a] != 0; }
Yi

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to ¢
is given by all vertices reachable from s, only traversing edges with positive
residual capacity.

d7f0fl, 42 lines

struct Dinic {
struct Edge {
int to, rev;
11 ¢, oc;
11 flow() { return max(oc - ¢, OLL); } // if you need flows
Yi
vi 1lvl, ptr, g;

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as repre-
sented by an adjacency matrix.

Time: O (V?) 8b0e19, 21 lines

GomoryHu.h

Description: Given a list of edges representing an undirected flow graph,
returns edges of the Gomory-Hu tree. The max flow between any pair of
vertices is given by minimum edge weight along the Gomory-Hu tree path.
Time: O (V) Flow Computations

12

0418b3, 13 lines

typedef array<ll,
vector<Edge> gomoryHu (int N,
vector<Edge> tree;

PushRelabel D (N)

tree.push_back ({1,

return tree;

7.3 Matching
DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list
of neighbors of the left partition, and btoa should be a vector full of -1’s of
the same size as the right partition. Returns the size of the matching. btoalt]
will be the match for vertex i on the right side, or —1 if it’s not matched.
Usage: vi btoa(m dfsMatching (g, btoa);
Time: O (VE)

vector<Edge> ed) {

// Dinic also works

D.addEdge (£ [0], t[1], t[2], t([2]);
i D.calc(i, parl[i])});
&& D.leftOfMinCut (j)) par[j] = 1i;

522b98, 22 lines

bool find(int j, vector<vi>& g,

int dfsMatching(vector<vi>& g,

rep(i, 0,sz(g))
vis.assign(sz (btoa),

pair<int, vi> globalMinCut (vector<vi> mat) {
pair<int, vi> best = {INT_MAX, {}};
int n = sz (mat);
vector<vi> co(n);
rep(i,0,n) col[i]l = {i};
rep (ph,1,n) {
vi w = mat[0];
size_t s = 0, t = 0;
rep(it,0,n-ph) { // O(V*2) — O(E log V) with prio. queue

w[t] = INT_MIN;
s = t, t = max_element (all(w)) - w.begin();
rep(i,0,n) w[i] += mat[t][i];

}

colt]});
)i

1,
tl)

7

co[s].insert (co[s].end(), all(co

best = min(best, {w[t] - mat[t][t
[
rep(i,0,n) mat[s][i] += mat([t][i];

rep (i, 0,n) mat[i][s] = mat[s][i];
mat [0] [t] = INT_MIN;

}

return best;

}

return sz (btoa)

vi& btoa, vi& vis) {

btoa, vis)) {

vi& btoa) {

vis)) {

(int) count (all (btoa), -1);

Edmond’s Blossom general Matching, Best known time is
O(VZ/V) U?‘;e with care

2d3dbl, 55 lines

struct Edmonds {
vector<vi> edge;
Edmonds (int N)
void add(int a,
int getBase(int 1)

getBase (base[1i
void mark_path (int pos,

toJoin;

edge (n), mate(n, -1), p(n), vis(

{ edgela].pb(b); edge[b].pb(a); }
{ return base[] ==

i ? 1 : (basel[i] =

int nx, int b, vi &path) {
!=Db; pos = plnx]) {
mate[pos];

UL stack.py WeightedMatching SCCTarjan Tarjan EulerWalk CycleOfLengthK 13

toJoin.pb (pos); todoin.pb (nx); done[jO0] = true; for (int 1 = 1; 1 <= n; i++) {
if (!vis[nx]) vis[nx] = ++T, path.pb(nx); int i0 = p[Jj0], jl, delta = INT_MAX; if (num[i]) continue;
¥ rep(3,1,m) if (!donel3]) { curroot = i;
} auto cur = a[i0 - 1]([j - 1] - u[i0] - v[J]; curchild = 0;
bool go (int pos) { if (cur < dist[j]) dist[j] = cur, prel[j] = JjO; tarjan(i, -1);
for (int nx : edge[pos]) { if (dist[j] < delta) delta = dist[j]l, jl = Jj; isArticulationPoint[i] = (curchild > 1);

int b, bpos = getBase(pos), bnx = getBase (nx); } }

if (bpos == bnx) continue; rep(3j,0,m) { }

else if (vis[nx]) { if (donelj]) ulpljl] += delta, v[j] -= delta;

vi path; todoin.clear(); else dist[j] -= delta; EulerWalk.h

if (vislbnx] < vis[bpos]) mark_path(pos, nx, b = bnx, } . Description: Eulerian undirected/directed path/cycle algorithm. Input
path) ; 30 o iL; . should be a vector of (dest, global edge index), where for undirected graphs,

else r}‘tark_path(nx,l pos, b = bpos, path); ¥ v.th.le . (p[30]); . forward/backward edges have the same index. Returns a list of nodes in

for (:!.nt z toqun)_ base[getBase(z)] = bj Wh:_"le ?jo) { //.update alternating path the Eulerian path/cycle with src at both start and end, or empty list if no

for (J,‘nt z : path) if (go(z)) return 1; J‘nff i1 = pre []0],; . cycle/path exists. To get edge indices back, add .second to s and ret.

} else if (plnx] == -1) { pl30] = p[31], 30 = 31; Time: O (V 4+ E))
plnx] = pos; } 780b64, 15 lines
if (mate[nx] == -1) { } vi eulerWalk (vector<vector<pii>>& gr, int nedges, int src=0) {

for (int y; nx != -1; nx = pos) rep(j,1,m) if (p[Jj]) ans[p[j] - 1] = 7 - 1; int n = sz (gr);
y = p[nx], pos = matel[y], mate[nx] =y, mately] = return {-v[0], ans}; // min cost vi D(n), its(n), eu(nedges), ret, s = {src};
nx; } D[srcl++; // to allow Ewuler paths, mot just cycles
return 1; while (!s.empty()) {
} 7.4 DFS algorithms int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
if (!vis[mate[nx]]) { vis[mate[nx]] = ++T; if (go (matel[. if (it == end){ ret.push_back(x); s.pop_back(); continue; }
nx])) return 1; } SCCTarjan.h tie(y, e) = grix][it++];
} Description: Finds strongly connected components in a directed graph. If if (leule]) {
} vertices u, v belong to the same component, we can reach u from v and vice D[x]--, D[yl++;
return 0; versa. eule] = 1; s.push_back(y);
} Usage: scc(graph, [&] (vig v) { . }) visits all components 13}
void init_dfs() { rep(i, 0, n) vis[i] = 0, p[i] = -1, base[i] in reverse topological order. comp[i] holds the component for (int x : D) if (x < 0 || sz(ret) != nedges+l) return {};
= i; } index of a node (a component only has edges to components with return {ret.rbegin(), ret.rend()};
bool dfs(int root) {vis[root] = ++T; return go(root); } lower index). ncomps will contain the number of components. }
void match () O{ Time: O (E+V) 17ec58, 15 lines
int ans = 0; A - 1
for (int pos = 0; pos < n; pos++) { void tarjan(LL pos) { i 7.5 Colorlng

if (mate([pos] != -1) continue; path'l?b(p‘?s)" v1§[pos] =1 low[pos] :vnum[pos] = t+itcurtime; CycleOfLengthKh

for (int nx : edge[pos]) { for (imt 1 = 0; 1 < gdge[pos] -size () i++) | Description: Find cycle of length K = 3, 4;
if (mate[nx] == -1) { LL nx = edgelpos] [1]; Time: O (V logV) in planar graph, O (E3/2> in dense graph

mate[pos] = nx; mate[nx] = pos; ans++; break; Jl-f (!flum[nX]) tarjan (nx) ; ' N ’ 9a5a9f, 28 lines
}) if (vislnx]) low[pos] = min(low[pos], low[nx]); pll cycle(const vector<pair<int, int>> g&edges) {
} ¥ if (low([pos] == num[pos]) { // Push path.back() until equal ;22 Tautgl [Ll1: vl : edges) n = max({n, u, v});
init_dfs(); pos J +4n;
rep(i, 0, n) if (mate[i] == -1 && dfs(i)) ans++, init_dfs/() ¥ vector d(n, 0), id(d), rk(d), cnt(d);
; . . vector e(n, vector (0, 0)), lk(n, wvector (0, 0));
cout << ans * 2 << endl; int main() { <= n; i++) { for (auto [u, v] : edges) ++d[ul, ++d[v];

rep(i, 0, n) if (i < mate[i]) iota(all(id), 0); sort(all(id), [&] (int x, int y) { return d[

for (int 1 = 1; i
cout << i + 1 << " " << mate[i] + 1 << " \n"[i == n - 1]; if (num[i] == 0) tarjan(l); x] < dlyl; });

} ¥ for (i = 0; i < n; i++) rk[id[i]] = i;
}i } for (auto [u, v] : edges) {
. if (rk[u] > rk[v]) swap(u, v);
. . Tarjan.h e[u] .push_back (v);
WelghtedMatchlng.h Description: Finds AP and Bridge. 1k [u] .push_back (v) ;
Description: Given a weighted bipartite graph, matches every node on the | Time: O (E + V) 50£160. 23 lines 1k [v] .push_back (u) ;
left with a node on the right such that no nodes are in two matchings and the " - }
sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost void tarjan(LL pos, LL par) { 11 ¢3 = 0;
for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is low[pos] = num[pos] = ++dfscnt; for (i = 0; i < n; i++) {
matched with R[matchli]]. Negate costs for max cost. Requires N < M. triav(nx, edge [pos]) { . for (int u : e[il]) cnt[u] = 1;
Time: (’)(NZM) Le0fe9. 31 lines :_"f (I'IIX == par) continue; for (int u : e[i]) for (int v : e[u]) c3 += cnt([v];
—) :) : if (inuminx]) { , for (int u : e[i]) cntlu] = 0;
pair<int, vi> hungarian(const vector<vi> &a) { if (pos == curroot) curchild++; }
if (a.empty()) return {0, {}}; tarjan (nx, pos); 11 c4 = 0;
int n = sz(a) + 1, m = sz(a[0]) + 1; if (low[nx] >= num[pos]) isArticulationPoint[pos] = 1; for (i = E) i< on; it {
vi u(n), v(m), p(m), ans(n - 1); // if(low[nz] > num[pos]) isBridge[pos][nz] = 1; for (int’u . lk’[i]) for (int v : e[u]) if (rk[v] > rk[i])
rep(i,1,n) { low[pos] = min(low([pos], low[nx]); c4 4= cnt[v]++;
}i?x[xg]ja i,O; // add 7dummy” worker 0 }) etee tovlpos] = minentpest, muninxl)y } for (int u : Ik[i]) for (int v : elul) entlvl = 0;
vi dist(m, INT_MAX), pre(m, -1); } .
vector<bool> done(m + 1); } return {c3, ci};

do { // dijkstra int main() {

UL stack.py EdgeColoring VertexColoring MaximalCliques MaximumClique MaximumIndependentSet LinkCutTree 14

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, com-
putes a (D + 1)-coloring of the edges such that no neighboring edges share
a color. (D-coloring is NP-hard, but can be done for bipartite graphs by
repeated matchings of max-degree nodes.)

Time: O (NM) e210e2, 31 lines

vi edgeColoring(int N, vector<pii> eds) {

vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
for (pii e : eds) ++ccle.first], ++ccle.second];
int u, v, ncols = *max_element (all(cc)) + 1;

vector<vi> adj(N, vi(ncols, -1));
for (pii e : eds) {

tie(u, v) = e;
fan[0] = v;
loc.assign(ncols, 0);
int at = u, end = u, d, ¢ = free[u], ind = 0, 1 0;
while (d = free[v], !loc[d] && (v = adjlu]l[d]) !'= -1)
loc[d] = ++ind, ccl[ind] = d, fan[ind] = v;
cclloc[d]] = c;
for (int cd = d; at != -1; cd *= ¢ ~ d, at = adjlat] [cd])
swap (adj[at] [cd], adjl[end = at][cd ~ c ~ d]);
while (adj[fan([i]][d] != -1) {
int left = fan[i], right = fan[++i], e = cc[i];
adj[u] [e] = left;
adjlleft] [e] = u;
adjlright] [e] = -1;
free[right] = e;
}
adjfu] [d] = fan[i];
adj[fan[i]] [d] = u;
for (int y : {fan[0], u, end})
for (ints& z = freely] = 0; adjlyllz] != -1; z++);
}
rep (i, 0,sz (eds))
for (tie(u, v) = eds[i]; adj[u] [ret[i]] != v;) ++ret[i];

return ret;

i

VertexColoring.h

Description: Calculates the chromatic number of an undirected graph.
Time: O (2.4422™)

"MaximalCliques.h" 011734, 17 lines

const int MAXN = 15;

int memo[1<<MAXN] = {0};

int aux (vector& eds, B nodes) {
auto k = nodes.to_ulong();
if (!nodes.any()) return 0;
if (memo[k]) return memo[k];
int r = MAXN;
cliques (eds, [

r = min(r, 1

}, nodes);
return memo (k] = r;

}

int chromaticNumber (vector& eds) {
vector comp;
rep(i, 0, sz(eds)) comp.push_back((~eds[i]).reset(1));
return aux(comp, (1 << sz (comp)) - 1);

}

7.6 Heuristics
MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a
symmetric bitset matrix; self-edges not allowed). Callback is given a bitset
representing the maximal clique.

&1 (B x) {

]
+ aux (eds, nodes & ~x));

Time: O (3"/3>, much faster for sparse graphs)
b0d5bl, 12 lines

typedef bitset<128> B;
template<class F>

void cliques (vector& eds,
if (!'P.any()) { if (!X.any())
auto g = (P | X)._Find_first();

auto cands = P & ~eds[q];

rep(i,0,sz(eds)) if
R[1] = 1;
cliques (eds, f, P

R[i] = P[i] = 0; X[i

}
}

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmet-
ric bitset matrix; self-edges not allowed). Can be used to find a maximum
independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90).
Runs faster for sparse graphs.

F f, BP
£(R);

X & eds[i],

MaximumIndependentSet.h
Description: To obtain a maximum independent set of a graph, find a max
clique of the complement. If the graph is bipartite, see MinimumVertexCover.

return;

7.7 Trees
LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and re-
move edges (as long as the result is still a forest), and check whether two
nodes are in the same tree.

Time: All operations take amortized O (log N). 590902, 90 lines

typedef vector<bitset<200>> vb;

struct Maxclique {
double 1imit=0.025,

vb e;

vv V;

vector<vi> C;

vi gmax, g, S, old;

void init (vv& r) {
for (auto& v : 1)
for (autos& v : r)

sort (all(xr),
int mxD = r[0].d;
rep(i,0,sz(r)) r[i].

}

void expand(vv& R, int lev
S[lev] += S[lev - 1]
old[lev] = S[lev - 1];

while (sz(R)) {

if (sz(g) + R.back().d <= sz (gmax))
g.push_back (R.back () .1);

vv T;
for (auto v:R) if
if (sz(T)) {

if (S[lev]++ / ++pk < limit)

int j = 0, mxk

C[l].clear(),

for (auto v
int k = 1;

auto f = [&] (int i)
while (any_of(all(

if (k > mxk)
if (k < mnk)

C[k] .push_back(v.1i);

}

if (jJ > 0) T[J - 1].d
rep (k, mnk, mxk + 1)

T[31.1 = 1,

expand (T, lev + 1);

} else if (sz(q)

g.pop_back (), R.pop_back();

}
}

vi maxClique () { init(V),

Maxclique (vb conn)

pk=0;
struct Vertex { int i,
typedef vector<Vertex> vv;

v.d

[] (auto a, auto b)

r)

mxD)

7

{
1

(e[R.back () .11 [v.1])

{ return e([v.i][i];

£))

[mxk + 1].clear();
v.i;

(int 1
k;

qmax

expand (V) ;
C(sz(e)+1l),

rep(i,0,sz(e)) V.push_back({i});

}
}i

v.d += e[v.1i][J.1];
{ return a.d > b.d;

T.push_back ({v.i});

init (T)
max (sz (gmax)
].clear();

struct Node { // Splay tree. Root’s pp contains tree’s parent.
Node xp = 0, *pp = 0, xcl[2];
bool flip = 0;
Node () { cI[0]
void fix () {
if (c[0]) c[0]->p = this;
if (c[l]) c[l]l->p = this;
// (+ update sum of subtree elements etc. if wanted)
}
void pushFlip() {
if (!flip) return;

= cl[l] = 0; fix(); }

flip = 0; swap(c[0], c[1]);
if (c[0]) c[0]->flip "= 1;
if (c[1]) c[1l]->flip "= 1;

}

int up() { return p ? p->c[l] == this : -1; }

void rot (int i, int b) {
int h = i ~ b;

Node #xx = c[i], *y = b == 2 ? x : x->c[h], xz =b ? vy : x;
if ((y—>p = p)) p—>clup()] = vy;
c[i] = z->cl[i ~ 11;
if (b < 2) {
x->c[h] = y->c[h ~ 1];
z->c[h ~ 1] = b ? x : this;
}
y->c[i ~ 1] = b ? this : x;
fix(); x->fix(); y—>fix();
if (p) p—>fix();
swap (pp, y~=>Pp);

}
void splay () {
for (pushFlip(); p;) {
if (p—>p) p->p->pushFlip();
p—>pushFlip(); pushFlip();

int cl = up(), c2 = p->up();
if (c2 == -1) p->rot(cl, 2);
else p->p->rot(c2, cl != c2);
}
}
Node* first () {
pushFlip () ;
return c[0] ? c[0]->first() : (splay(), this);
}

}i

struct LinkCut {
vector<Node> node;
LinkCut (int N) : node (N) {}

void link(int u, int v) { // add an edge (u, v)
assert (!connected(u, v));
makeRoot (&node [u]) ;

node [u] .pp = &nodel[v];

}

void cut (int u, int v) { // remove an edge (u, v)
Node *x = &node[u], *top = &nodel[Vv];

makeRoot (top); x->splay();

Ul stack.py
assert (top == (x->pp ?: x->c[0]));
if (x->pp) x—>pp = 0;
else {
x->c[0] = top->p = 0;
x=>fix ();
}
}
bool connected(int u, int v) { // are u, v in the same tree?
Node* nu = access (&node[u])->first();
return nu == access (&node[v])->first();
}

void makeRoot (Nodex u) {
access (u) ;
u->splay();
if (u->c[0]) {
u->c[0]->p = 0;
u->c[0]->flip "= 1;
u->c[0]->pp = u;
u->c[0] = 0;
u->fix();
}
}
Node* access (Nodex u) {
u->splay();

while (Nodex pp = u->pp) {
pp->splay (); u->pp = 0;
if (pp->cll]) |
pp->c[l]->p = 0; pp->c[l]->pp = pp; }
pp->c[l] = u; pp—>fix(); u = pp;
}
return u;

}
}i

DirectedMST'.h

Description: Finds a minimum spanning tree/arborescence of a directed
graph, given a root node. If no MST exists, returns -1.
Time: O (ElogV)

"../data-structures/UnionFindRollback.h" 39e620, 60 lines

struct
struct
Edge key;
Node =1,
11 delta;
void prop () {
key.w += delta;

Edge { int a, b; 11 w; };
Node {

*r;

if (1) l->delta += delta;
if (r) r->delta += delta;
delta = 0;
}
Edge top() { prop(); return key; }
}i
Node xmerge (Node xa, Node xb) {
if (!'a || !b) return a ?: b;
a->prop (), b->prop();
if (a->key.w > b->key.w) swap(a, b);
swap (a->1, (a->r = merge(b, a->r)));
return a;
}

void pop (Nodex& a) { a->prop(); a = merge(a->1, a->r); }
pair<ll, vi> dmst (int n,
RollbackUF uf (n);

vector<Nodex> heap (n);

int r, vector<Edge>& g) {

for (Edge e : g) heaple.b] = merge (heapl[e.b], new Node{e});
11 res = 0;

vi seen(n, -1), path(n), par(n);

seen[r] = r;

vector<kEdge> Q(n), in(n, {-1,-1}), comp;

deque<tuple<int, int, vector<Edge>>> cycs;
rep(s,0,n) {
int u = s, gi = 0, w;
while (seen[u] < 0) {
if ('heap[u]) return {-1,{}};
Edge e = heap[ul]l->top();
heap([u]->delta -= e.w, pop(heaplul);
Q[gi] = e, path[gi++] = u, seenlu] = s;
res += e.w, u = uf.find(e.a);
if (seen[u] == s) {
Nodex* cyc = 0;
int end = gi, time = uf.time();
do cyc = merge(cyc, heaplw = path[--gil]);
while (uf.join(u, w));
u = uf.find(u), heapl[u] = cyc, seen[u] = -1;
cycs.push_front ({u, time, {&Q[gil, &Qlend]}});
}
}
rep(i,0,q9i) in[uf.find(Q[i].b)] = QI[i];
}
for (autos [u,t,comp] cycs) { // restore sol (optional)
uf.rollback(t);
Edge inEdge = in[u];
for (autos e comp) in[uf.find(e.b)] = e;
in[uf.find(inEdge.b)] = inEdge;
}
rep(i,0,n) par[i] = in[i].a;
return {res, par};

}

7.8 Math

7.8.1 Number of Spanning Trees
Create an N x N matrix mat, and for each edge a — b € G, do

mat [a] [b]-—, mat[b] [b]++ (and mat [b] [a]l——,
mat [a] [a]++ if G is undirected). Remove the ith row and

column and take the determinant; this yields the number of
directed spanning trees rooted at ¢ (if G is undirected, remove
any row/column).

7.8.2 Erdds—Gallai theorem

A simple graph with node degrees di > --- > d,, exists iff
di+---+d, is even and for every k =1...n,

k n
> di <k(k—1)+ > min(ds, k).
i=1 i=k+1

Geometry (8)

8.1 Geometric primitives
Point.h

Description: Class to handle points in the plane. T can be e.g. double or

long long. (Avoid int.) ATec0a, 28 lines

template <class T> int sgn(T x)
template<class T>

{ return (x > 0) - (x < 0); }
struct Point {
typedef Point P;
T %, v;
explicit Point (T x=0,
bool operator< (P p)

T y=0) x(x), y(y) {}

const { return tie(x,y) < tie(p.x,p.y); }

DirectedMST Point lineDistance SegmentDistance SegmentlIntersection

bool operator==(P p) const { return tie(x,y)==tie(p.x,p.

P operator+ (P p) const { return P(x+p.x, y+p.y); }

P operator- (P p) const { return P(x-p.x, y-p.y); }

P operator* (T d) const { return P (xxd, y*d); }

P operator/ (T d) const { return P (x/d, y/d); }

T dot (P p) const { return x*p.x + y*p.y; }

T cross (P p) const { return xxp.y - y*p.x; }

T cross(P a, P b) const { return

T dist2() const { return xxx + y=xy; }

double dist () const { return sqrt ((double)dist2()); }

// angle to z—azis in interval [—pi, pi]

double angle() const { return atan2(y, x); }

P unit () const { return xthis/dist();

P perp() const { return P(-y, x);

P normal () const { return perp().unit(); }

// returns point rotated ’a’

P rotate (double a) const {
return P (x*cos(a)-y*sin(a),xxsin(a)+yxcos(a)); }

friend ostream& operator<<(ostream& os, P p) {
return os << "(" << p.x << "," < p.y << ")"; }

Yi

lineDistance.h

Description:

Returns the signed distance between point p and the line con-
taining points a and b. Positive value on left side and negative

15

v)i }

(a-*this) .cross (b—-+this); }

} // makes dist()=1
} // rotates +90 degrees

radians ccw around the origin

on right as seen from a towards b. a==Db gives nan. P is sup- £es
posed to be Point<T> or Point3D<T> where T is e.g. double ¢ p
or long long. It uses products in intermediate steps so watch
out for overflow if using int or long long. Using Point3D will
always give a non-negative distance. For Point3D, call .dist /S
on the result of the cross product.
"Point.h" f6bf6b, 4 lines
template<class P>
double lineDist (const P& a, const P& b, const P& p) {
return (double) (b-a).cross(p-a)/(b-a).dist();
}
SegmentDistance.h)
Description:
Returns the shortest distance between point p and the line
segment from point s to e. S
Usage: Point<double> a, b(2,2), p(l,1);
bool onSegment = segDist (a,b,p) < 1le-10;
"Point.h" 5c88f4, 6 lines
typedef Point<double> P;
double segDist (P& s, P& e, P& p) {
if (s==e) return (p-s).dist();
auto d = (e-s).dist2(), t = min(d,max (.0, (p-s).dot (e-s)));
return ((p-s)=*d-(e-s)«t).dist()/d;
}
SegmentIntersection.h
Description:
If a unique intersection point between the line segments going
from sl to el and from s2 to e2 exists then it is returned.
If no intersection point exists an empty vector is returned. el
If infinitely many exist a vector with 2 elements is returned,
containing the endpoints of the common line segment. The e2
wrong position will be returned if P is Point<ll> and the in- 1 Tl
tersection point does not have integer coordinates. Products S 52
of three coordinates are used in intermediate steps so watch
out for overflow if using int or long long.
Usage: vector<P> inter = seglnter(sl,el,s2,e2);
if (sz(inter)==1)
cout << "segments intersect at " << inter[0] << endl;
"Point.h", "OnSegment.h" 9d57f2, 13 lines
template<class P> vector<P> seglnter(P a, P b, P c, P d) {

Ul stack.py

auto oa = c.cross(d, a), ob = c.cross(d, b),
oc = a.cross(b, c), od = a.cross (b, d);
// Checks if intersection is single non—endpoint point.
if (sgn(oa) % sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
return {(a * ob — b * oa) / (ob - oa)};
set<P> s;

if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert (b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);

return {all(s)};

linelntersection.h

Description:

If a unique intersection point of the lines going through sl,el

and s2,e2 exists {1, point} is returned. If no intersection point

exists {0, (0,0)} is returned and if infinitely many exists {-1, e2 r
(0,0)} is returned. The wrong position will be returned if P

is Point<lIl> and the intersection point does not have inte- el s2
ger coordinates. Products of three coordinates are used in ~S1
intermediate steps so watch out for overflow if using int or 1.

Usage: auto res = linelnter(sl,el,s2,e2);

if (res.first == 1)

cout << "intersection point at " << res.second << endl;
"Point.h" a01f81, 8 lines

template<class P>
pair<int, P> lineInter (P sl, P el, P s2, P e2) {
auto d = (el - sl).cross(e2 - s2);
if (d == 0) // if parallel
return {-(sl.cross(el, s2)
auto p = s2.cross(el, e2), g
return {1, (sl = p + el % q)

== 0), P(0, 0)};
= s2.cross(e2, sl);
/ d};

sideOf.h

Description: Returns where p is as seen from s towards e. 1/0/-1 < left/on
line/right. If the optional argument eps is given 0 is returned if p is within
distance eps from the line. P is supposed to be Point<T> where T is e.g.
double or long long. It uses products in intermediate steps so watch out for
overflow if using int or long long.

Usage: bool left = sideOf (pl,p2,q)==1;

"Point.h" 3af8lc, 9 lines

template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }

template<class P>
int sideOf (const P& s, const P& e, const P& p, double eps) {

auto a = (e-s).cross(p-s);
double 1 = (e-s).dist () *eps;
return (a > 1) - (a < -1);

OnSegment.h
Description: Returns true iff p lies on the line segment from s to e. Use
(segDist (s, e,p) <=epsilon) instead when using Point<double>.

"Point.h" c597e8, 3 lines

template<class P> bool onSegment (P s, P e, P p) {
return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;

}

linearTransformation.h

r. pl
Description: /

0 res
Apply the linear transformation (translation, rotation and qO\
scaling) which takes line p0O-pl to line q0-q1 to point r. ql
"Point.h" 03a306, 6 lines

typedef Point<double> P;
P linearTransformation (const P& p0O, const P& pl,
const P& g0, const P& gl, const P& r) {
P dp = pl-p0, dg = gl-g0, num(dp.cross(dqg), dp.dot(dq));
return g0 + P ((r-p0).cross(num), (r-p0).dot (num))/dp.dist2();
}

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of
point p across line ab insted. The wrong point will be returned if P is an in-
teger point and the desired point doesn’t have integer coordinates. Products
of three coordinates are used in intermediate steps so watch out for overflow.

"Point.h" b5562d, 5 lines

template<class P>

P lineProj(P a, P b, P p, bool refl=false) {
Pv=>Db- a;
return p - v.perp()* (l+refl)+*v.cross(p-a)/v.dist2();

I

RotationalSwap.h

Description: Find whether exists triangle whose area is exac‘(zl%gc‘go 85 lines

struct point {
11 %, y;
point () {}
point (11 _x, 11 _y) {
X = _ X, ¥y = _Y;
}
}i
11 cross(point a, point b) {
return a.x x b.y - a.y * b.x;
}
11 area(point p, point g, point r) {
return abs(cross(p, q) + cross(qg, r) + cross(r, p));
¥
struct seg {
int i, 3;
point a, b, vec;

seg () {}
seg(int _i, int _j, point _a, point _b, point _vec) {
i=_41i, j=_3, a=_a, b =_b, vec = _vec;
Yi
}i
const int N = 2005;
11 n, s;

point arr[N];

bool cmp (point a, point b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;

}

bool cmp2(seg a, seg b) {
return cross(a.vec, b.vec) > 0;

}

vector<seg> segment;

int ranked([N], id[N];

int main() {
scanf ("%$11d %11d", &n, &s); s x= 2;
for (int i = 1; i <= n; i++) {
scanf ("$11d %11d", &arr([i].x, &arr[il.y);
}

sort (arr + 1, arr + n + 1, cmp);
for (int i = 1; i <= n; i++) for (int j = 1; j < i; Jj++) {
[

segment .push_back (seg (i, j, arr([i], arr[j], point(arr[i].
x — arr[j].x, arr[i]l.y - arr[jl.y)));
}
sort (segment.begin(), segment.end(), cmp2);
for (int 1 = 1; i <= n; i++) ranked[i] = id[i] = 1i;

for (auto cur segment) {
int a = id[cur.j], b = id[cur.i];

}

lineIntersection sideOf OnSegment linearTransformation LineProjectionReflection RotationalSwap RotationalSweep

int 1 =1, r = a - 1;

while (1 <= r) {
int mid = (1 + r) >> 1;
11 hasil = area(arr[ranked[mid]], cur.a,
if (hasil == s) {

printf ("Yes\n");

printf ("$11d %11d\n", arr[ranked[mid]].x,

mid]].y);

cur.b);

printf ("$11d %11d\n", cur.a.x, cur.a.y);
printf ("$11d %11d\n", cur.b.x, cur.b.y);

return 0;
else if (hasil < s) {
r = mid - 1;
} else {
1 = mid + 1;

-~

}
1l =Db+ 1, r=n;
while (1 <= r) {

int mid = (1 + r) >> 1;
11 hasil = area(arr[ranked[mid]], cur.a,
if (hasil == s) {

printf ("Yes\n");

printf ("$11d %11d\n", arr[ranked[mid]].x,

midll.y);

cur.b);

printf ("$11d %11d\n", cur.a.x, cur.a.y);
printf("%$11ld %$11d\n", cur.b.x, cur.b.y);

return O;
} else if (hasil > s) {
r = mid - 1;
} else {
1 = mid + 1;
}
}
assert(a + 1 == Db);

swap (ranked[a], ranked[b]);
swap (id[cur.i], id[cur.j])

7

}
printf ("No\n");
return 0;

RotationalSweep.h
Description: Codechef blue red
Time: O (N2 log N)

"Point.h"

arr [ranked[

arr [ranked[

16

67e3bc, 40 lines

template<class P>
P RotationalSweep (vector<P> &all) {

for (int 1 = 0; 1 < n; i++) {
vector <PP> kiri, kanan;
for (int j = 0; j < n; Jj++) {
PP curtmp = all[j];

curtmp.center = curtmp.center - all[i].center;

if (i == j) continue;

if (curtmp.center.y >= 0) kiri.pb(curtmp);

else kanan.pb (curtmp) ;

}
sort (kiri.begin(), kiri.end());
sort (kanan.begin (), kanan.end());

kiri.insert (kiri.end(), kanan.begin(),
LL cnt([2] = {0, 0};

LL N = kiri.size();

LL hi = 0;

cnt [kiri[0] .color]++;

for (int j = 0; j < N; j++) {

do {
LL nx = (hi + 1) % N
if (pivot.ccw(kiri[j

break;

kanan.end());

;
].center, kiri[nx].center) <= 0)

UI: stack.@ircleIntersection CircleTangents CircleLine CirclePolygonlIntersection circumcircle MinimumEnclosingCircle InsidePolygon PolygonArea PolygonCenter PolygonCut 17

cnt [kiri[nx].color]++;
hi = nx;
} while (1);
LL curcnt[2] = {initialColor[0] - cnt[0], initialColor([1]
- cnt[1]};
curcnt[all[i].color]-—;
cnt [kiri[j].color]——;
ans = min(ans, cnt[0] + curcnt([1l]);
ans = min(ans, cnt[1l] + curcnt([0]);
cnt [kiri[j].color]++;
if (hi == J) {
LL nx = (hi + 1) % N;
cnt [kiri[nx].color]++;
hi = nx;
}
cnt [kiri[j].color]-—;

}

8.2 Circles

CircleIntersection.h
Description: Computes the pair of points at which two circles intersect.
Returns false in case of no intersection.

"Point.h" 84d6d3, 11 lines

typedef Point<double> P;
bool circlelInter (P a,P b,double rl,double r2,pair<pP,

P>+ out) {

if (a == b) { assert(rl != r2); return false; }
P vec = b - a;
double d2 = vec.dist2(), sum = rl+r2, dif = rl-r2,
P = (d2 + rlxrl - r2xr2)/(d2%2), h2 = rlxrl - pxpxd2;

if (sumssum < d2 || difxdif > d2) return false;

P mid = a + vecxp, per = vec.perp() * sqgrt(fmax(0, h2) / d2);
xout = {mid + per, mid - per};
return true;

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is
negated. Can return 0, 1, or 2 tangents — 0 if one circle contains the other (or
overlaps it, in the internal case, or if the circles are the same); 1 if the circles
are tangent to each other (in which case .first = .second and the tangent line
is perpendicular to the line between the centers). .first and .second give the
tangency points at circle 1 and 2 respectively. To find the tangents of a circle
with a point set r2 to 0.

"Point.h" b0153d, 13 lines

template<class P>

vector<pair<P, P>> tangents(P cl, double rl, P c2, double r2) {
P d=c2 - cl;
double dr = rl - r2, d2 = d.dist2(), h2 = d2 - dr x dr;
if (d2 == 'l h2 < 0) return {};
vector<pair<P, P>> out;
for (double sign {-1, 1}) {
P v = (d* dr + d.perp() * sqgrt(h2) % sign) / d2;

out.push_back ({cl + v x rl, c2 + v % r2});

}
if (h2 == 0) out.pop_back();
return out;
}
CircleLine.h
Description: Finds the intersection between a circle and a line. Re-

turns a vector of either 0, 1, or 2 intersection points. P is intended to be
Point<double>.

"Point.h" eOcfba, 9 lines

template<class P>

vector<P> circlelLine(P c, double r, P a, P b) {

Pab=b-a, p=a+ ab » (c-a).dot(ab) / ab.dist2();
double s = a.cross(b, c), h2 = r«r - sxs / ab.dist2();
if (h2 < 0) return {};

if (h2 == 0) return {p};

P h = ab.unit () * sqgrt (h2);

return {p - h, p + h};

CirclePolygonlIntersection.h
Description: Returns the area of the intersection of a circle with a ccw
polygon.

Time: O (n)

"../../content/geometry/Point.h"

typedef Point<double> P;

#define arg(p, gq) atan2(p.cross(q),

alee63, 19 lines

p.dot (q))

double circlePoly (P c, double r, vector<P> ps) {

auto tri = [&] (P p, P qg) {
auto r2 = r x r / 2;
Pd=gqg-pj
auto a = d.dot(p)/d.dist2(), b = (p.dist2()-rx*r)/d.dist2();
auto det = a *x a - b;
if (det <= 0) return arg(p, q) * r2;
auto s = max (0., -a-sqgrt(det)), t = min(l., -a+sqrt(det));
if (t < 0 || 1 <= s) return arg(p, q) * r2;
Pu=p+dx*s, v=p+dx*t;
return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;

Yi

auto sum = 0.0;

rep(i,0,sz(ps))
sum += tri(ps[i] - ¢, ps[(i + 1) % sz(ps)] - c);

return sum;

circumcircle.h
Description:

The circumcirle of a triangle is the circle intersecting all
three vertices. ccRadius returns the radius of the circle going
through points A, B and C and ccCenter returns the center
of the same circle.

"Point.h"

typedef Point<double> P;
double ccRadius (const P& A,

lcaa3a, 9 lines

const P& B, const P& C) {

return (B-A).dist()* (C-B).dist ()« (A-C).dist()/
abs ((B-A) .cross (C-A)) /2;
}
P ccCenter (const P& A, const P& B, const P& C) {
P b =C-A, c = B-A;
return A + (bxc.dist2()-c*b.dist2()) .perp()/b.cross(c)/2;
}

MinimumEnclosingCircle.h
Description: Computes the minimum circle that encloses a set of points.
Time: expected O (n)

"circumcircle.h" 09ddOa, 17 lines

pair<P, double> mec (vector<P> ps) {
shuffle(all(ps), mt19937 (time(0)));
P o = ps[0];
double r = 0, EPS = 1 + le-8;
rep(i,0,sz(ps)) if ((o - ps[i]).dist() > r = EPS) {
o =psli], r = 0;
rep(j,0,1i) if ((o - ps[j]).dist() > r % EPS) {
o = (ps[i] + ps[3l) / 2;
r = (o - ps[i]).dist();
rep(k,0,3) if ((o - pslk]).dist() > r = EPS) {

o = ps[k]);

r =

ccCenter (ps[i], ps[il,
(o — ps[i]).dist();

}
}
return {o,

}

r};

8.3 Polygons
InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it
returns false for points on the boundary. The algorithm uses products in
intermediate steps so watch out for overflow.

Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};

bool in = inPolygon(v, P{3, 3}, false);

Time: O (n)

"Point.h", 2bf504, 11 lines

"OnSegment .h", "SegmentDistance.h"

template<class P>
bool inPolygon (vector<P> &p,
int cnt = 0, n = sz(p);
rep(i,0,n) {
P g=p[(i+ 1) %nl;
if (onSegment(p[i], g, a)) return !strict;
//or: if (segDist(p[i], q, a) <= eps) return !strict;

P a, bool strict = true) {

cnt = ((a.y<plil.y) - (a.y<qg.y)) =* a.cross(pl[il], q) > 0;
}
return cnt;
}
PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enu-
meration gives negative area. Watch out for overflow if using int as T'!

"Point.h" £12300, 6 lines

template<class T>

T polygonArea?2 (vector<Point<T>>& v) {
T a = v.back().cross(v[0]);
rep(i,0,sz(v)-1) a += v[i].cross(v[i+l]);
return a;

PolygonCenter.h
Description: Returns the center of mass for a polygon.
Time: O (n)
"Point.h"
typedef Point<double> P;
P polygonCenter (const vector<P>& v) {
P res (0, 0); double A = 0;

9706dc, 9 lines

for (int i = 0, j = sz(v) - 1; 1 < sz(v); J = i++) {
res = res + (v[i] + vI[3j]) * v[jl.cross(v[i]);
A += v[j].cross(v[i]);

}

return res / A / 3;

PolygonCut.h
Description:
Returns a vector with the vertices of a polygon with every-
thing to the left of the line going from s to e cut away.
Usage: vector<P> p = ...;
p = polygonCut (p, P(0,0),
"Point.h", "lineIntersection.h"
typedef Point<double> P;
vector<P> polygonCut (const vector<P>& poly,
vector<P> res;
rep(i,0,sz(poly)) {

P(1,0));
f2b7d4, 13 lines

P s, Pe) {

P cur = poly[i], prev = i ? poly[i-1] poly.back();
bool side = s.cross(e, cur) < 0;
if (side != (s.cross (e, prev) < 0))

res.push_back (lineInter(s, e, cur, prev).second);

Ul stack.py

if (side)
res.push_back (cur);
}

return res;

PolygonUnion.h
Description: Calculates the area of the union of n polygons (not necessar-
ily convex). The points within each polygon must be given in CCW order.
(Epsilon checks may optionally be added to sideOf/sgn, but shouldn’t be
needed.)

Time: O (NQ), where N is the total number of points
"Point.h", "sideOf.h"

typedef Point<double> P;

3931c6, 33 lines

double rat (P a, P b) { return sgn(b.x) ? a.x/b.x a.y/b.y; }
double polyUnion (vector<vector<P>>& poly) {
double ret = 0;
rep(i,0,sz(poly)) rep(v,0,sz(poly[i])) {
P A = poly[i]l[v], B = poly[i]l[(v + 1) % sz(polyl[il)];
vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
rep(j,0,sz(poly)) if (1 != 3J) |
rep(u,0,sz (poly[j])) {

P C = poly[jlful, D = poly[jl[(u + 1) % sz(poly[jl)];
int sc = sideOf (A, B, C), sd = sideOf (A, B, D);
if (sc != sd) {
double sa = C.cross(D, A), sb = C.cross (D, B);
if (min(sc, sd) < 0)
segs.emplace_back(sa / (sa - sb), sgn(sc - sd));
} else if (!sc && !sd && j<i && sgn((B-A).dot (D-C))>0){
segs.emplace_back(rat(C - A, B - A), 1);
segs.emplace_back(rat (D - A, B - A), -1);

}
}
sort (all (segs));

for (autos& s segs) s.first = min(max(s.first, 0.0), 1.0);
double sum = 0;
int cnt = segs[0].second;
rep(j,1,sz(segs)) {
if (!cnt) sum += segs[j].first - segs[j - 1].first;
cnt += segs[]j].second;
}
ret += A.cross(B) * sum;

}

return ret / 2;

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counter-
clockwise order. Points on the edge of the hull between two
other points are not considered part of the hull.

Time: O (nlogn)

"Point.h" 310954, 13 lines

typedef Point<ll> P;

vector<P> convexHull (vector<P> pts) {
if (sz(pts) <= 1) return pts;
sort (all (pts));
vector<P> h(sz(pts)+1);
int s = 0, t = 0;

for (int it = 2; it-—-; s = --t, reverse(all (pts)))
for (P p pts) {
while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t—-—;
h[t++] = p;
}
return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[l])};

PolygonUnion ConvexHull onionDecomposition

onionDecomposition.h
Description: Online Dynamic Convex Hull

<bits/stdct+.h> 130a28, 190 lines

using namespace std;
using 11 = int64_t;

// Decremental convex hull in O(n log n)
// From ”Applications of a semi—dynamic convezr hull algorithm’
by J. Hershberger and S. Suri
struct Upper_ Hull({
struct Link{
Point p;
Link *prev = nullptr,
int id;
Yi
struct Node{
Link *chain,
Yi
template<typename S, typename T>
pair<Link«, Linkx> find_bridge (Link=x*1,
convex) {
while (next (1) || next(r)){
if (!next(r) || (next(l) && convex(Point{0, 0}, next(l)->p
- 1->p, next(r)->p - r—>p))){
if (convex (1->p, next(l)->p, r->p)) 1 = next(1l);
else break;
} else {
if (!convex (1->p,
else break;
}

4

*next = nullptr;

xchain_back, *tangent;

Linkxr, S next, T

r->p, next(r)->p)) r = next(r);

}
return {1, r};
}
template<bool rev = false>
void fix_chain(int u, Linkxl, Linkxr){
if(rev){ // 1l and r to the right of actual bridge
tie(r, 1) = find_bridge(r, 1,
[1(Link*x) { return x->prev; },
[] (Point const&a, Point consts&b, Point constsc) {
return ccw(a, b, c) >= 0;

1)

} else { // |l and r to the left of actual bridge
tie(l, r) = find_bridge(l, r,

[] (Link*x){ return x->next; 1},

[] (Point const&a, Point consté&b, Point consté&c) {
return ccw(a, b, c) <= 0;
1)
}
tree[u] .tangent = 1;
tree[u] .chain = tree[2*u].chain;
tree[u] .chain_back = tree[2*u+l].chain_back;
tree[2*u] .chain = l->next;
tree[2+u+l].chain_back = r->prev;
if (1->next) l->next->prev = nullptr;
else tree[2xu].chain_back = nullptr;

if (r->prev) r->prev->next = nullptr;
else tree[2+u+l].chain = nullptr;
l->next = r; r—>prev = 1;
}
void build(int u, int a, int b){
if (b-a == 1){
tree[u] .chain = tree[u].chain_back = &lists[al;
tree[u] .tangent = nullptr;
return;
}

const int m = a + (b-a)/2;

build(2+u, a, m); build(2%u+l, m, b);

auto 1 = tree[2+u].chain, r = tree[2+u+l].chain;
fix_chain(u, 1, r);

18

}

nt u, int v){

].chain = tree([v].chain;

].chain = nullptr;

] .chain_back = tree[v].chain_back;
].chain_back = nullptr;

< £ < e

}

void remove (int u, int a, int b, int constsi) {

if(i < a || i >= b) return;

// we should never hit a leaf

assert (b-a > 1);

const int m = a + (b-a)/2;

// one child —> that child contains i

if (!treefu].tangent) {
int v = i<m ? 2xu
tree[v].chain = tree[u].chain;
tree[v].chain_back = tree[u].chain_back;
if(i < m) remove(2*u, a, m, 1i);
else remove (2+u+l, m, b, 1i);
rob (u, v);
return;

2xu+l;

}
// restore hull of children
auto 1 = tree[u].tangent, r = l->next;
l->next = tree[2%u].chain;
if (tree[2+u] .chain) tree[2xu].chain->prev = 1;
else tree[2*u].chain_back = 1;
tree[2*u] .chain = tree[u].chain;
r->prev = tree[2+u+l].chain_back;
if (tree[2xu+l].chain_back)
tree[2xu+l].chain_back->next = r;
else tree[2+u+l].chain = r;
tree[2+u+l].chain_back = tree[u].chain_back;
// delete 1
const int v = i<m ? 2«u
// only i
if (tree[v].chain == tree[v].chain_back && tree[v].chain->id
== 1i){
tree[v].chain = tree[v].chain_back = nullptr;
rob (u, v*1);

2xu+l;

tree[u] .tangent = nullptr;
return;

}

if(i < m){
if(l->id == i) 1 =

1->next;
remove (2+u, a, m, i);
if(!l) 1 = treel[2xu].chain_back;
1

fix_chain<true>(u, 1, r);
} else {
if(r->id == i) r = r->prev;
remove (2«u+l, m, b, 1);
if(!r) r = tree[2+u+l].chain;
fix_chain<false>(u, 1, r);
}
}
void remove (int 1) {
// % is the only point
if (tree[l].chain == tree[l].chain_back){
tree[l].chain = tree[l].chain_back = nullptr;

return;
}
remove (1, 0, n, 1i);
}
Upper_Hull (vector<Point> consts&v)
lists(n){
assert (is_sorted(v.begin(), v.end()));
for (int i=0; i<n; ++1i){

n(v.size()), tree(4xn),

Ul stack.py

lists[i].p = vI[i];
lists[i].1 i
}
build (1, O,
}
vector<int> get_hull () {
vector<int> ret;
for (Linkx u = tree[l].chain; u;
ret.push_back (u->id) ;
return ret;
}
vector<Point> get_hull_points () {
vector<Point> ret;
for (Linkx u = tree[l].chain; u;
ret.push_back (u->p);
return ret;
}
int n;
vector<Node> tree;
vector<Link> lists;
}i

n);

u=u->next)

u=u->next)

// test code from https://codeforces.com/blog/entry/75929
signed main () {
int N;
scanf ("%d", &N) ;
vector<int> layer (N);
vector<int> ans (N);
vector<Point> ps;
map<Point,int> id;
for (int i=0;i<N;i++){
int X,Y;
scanf ("%d %d", &X, &Y);
ps.push_back ({X,Y});
id[{X,Y}]=1i;
}
sort (ps.begin(),ps.end());
Upper_Hull left (ps);
reverse (ps.begin(),ps.end());
for (autos& p:ps) p=-p;
Upper_Hull right (ps);
for (autos p:ps) p=-p;
reverse (ps.begin(),ps.end());
for (int 1=1,cnt=0;cnt<N;1++) {
set<int> hull;
for (int i:left.get_hull())
for (int i:right.get_hull())
for (int i:hull){
assert (!layer[i]);
cnt++;
layer[i]=1;
left.remove (1) ;
right.remove (N-1-1i);

hull.insert (i);
hull.insert (N-1-1i);

}
}
for (int i=0; i<N; i++)
for (int i=0; i<N; i++)
return O;

ans[id[ps[i]]]=layer[i];
printf ("$d\n",ans[1]);

}

HullDiameter.h

Description: Returns the two points with max distance on a convex hull
(ccw, no duplicate/collinear points).

Time: O (n)

"Point.h" c571b8, 12 lines

typedef Point<1ll> P;

array<P, 2> hullDiameter (vector<P> S) {
int n = sz(S), j=n<27?270: 1;
pair<ll, array<P, 2>> res ({0, {S[0], S[0]}});

HullDiameter HalfPlane HalfplaneSet

rep(i,0,3)
for (;; J = (3 +1) % n) {
res = max(res, {(S[i] - S[j]).dist2(), {S[i]l, S[J1}});
if ((Ss[(3J + 1) % n] - S[J]).cross(S[i + 1] - S[i]) >= 0)
break;
}
return res.second;

HalfPlane.h

Description: Computes the intersection of a set of half-planes. Input is
given as a set of planes, facing left. Output is the convex polygon represent-
ing the intersection. The points may have duplicates and be collinear. Will
not fail catastrophically if ‘eps > sqrt(2)(line intersection error)‘. Likely to
work for more ranges if 3 half planes are never guaranteed to intersect at the
same point.

Time: O (nlogn)
"sideOf.h", edaddb, 31 lines

"Point.h", "lineIntersection.h"

typedef Point<double> P;

typedef array<P, 2> Line;
#define sp(a) al0], all]
#define ang(a) (al[l] - al[0]).angle()
int angDiff (Line a, Line b) { return sgn(ang(a) - ang(b)); }
bool cmp(Line a, Line b) {
int s = angDiff(a, b);
return (s ? s sideOf (sp(a), b[0])) < O;

}

vector<P> halfPlanelIntersection (vector<Line> vs) {

const double EPS = sqgrt(2) x le-8;
sort (all(vs), cmp);
vector<Line> deq(sz (vs) + 5);
vector<P> ans(sz(vs) + 5);
deq[0] = vs[O0];
int ah = 0, at = 0, n = sz(vs);
rep(i,1,n+1) {

if (i == n))

vs.push_back (deg[ah

if (angDiff (vs[i], vs[i - 1]

1)
= 0) continue;
)

while (ah<at && sideOf (sp(vs[i]), ans[at-1], EPS) < 0)
at——;

while (i!=n && ah<at && sideOf (sp(vs[i]),ans[ah],EPS)<0)
ah++;

auto res = linelnter(sp(vs[i]), sp(deqlat]));

if (res.first != 1) continue;

ans[at++] = res.second, deqglat] = vs[i];

}
if (at - ah <= 2)
return {ans.begin()

}

return {};

+ ah, ans.begin() + at};

HalfplaneSet.h

Description: Data structure that dynamically keeps track of the intersec-
tion of halfplanes.

<bits/stdct+.h> ffoda9, 95 lines

using namespace std;

using T = int;

using T2 = long long;
using T4 = __ intl128_t;
const T2 INF = 2e9;

struct Line { T a, b; T2 c; };
bool operator<(Line m, Line n) {
auto half = [&] (Line m) {
return m.b < 0 || m.b == 0 && m.a < 0; };
return make_tuple (half(m), (T2)m.b * n.a) <
make_tuple (half(n), (T2)m.a * n.b);
}
tuple<T4, T4, T2> LinelIntersection(Line m, Line n) {
T2 d = (T2)m.a » n.b - (T2)m.b x n.a; // assert(d);

19
T4 x = (T4)m.c » n.b - (T4)m.b * n.c;
T4 vy = (T4)m.a * n.c — (T4)m.c * n.a;
return {x, y, d};
}
Line LineFromPoints(T x1, T yl, T x2, T y2) {
Ta=yl -y2, b=x2 - x1;
T2 ¢ = (T2)a » x1 + (T2)b * yl;
return {a, b, c};

}

ostream& operator<<(ostreamé& out,
out << "(" << l.a << " x x + "

myn,

return out;

}

struct HalfplaneSet
HalfplaneSet () {

Line 1) {

<< 1.b << " x y <= " << l.c <<

multiset<Line> {

insert ({+1, 0, INF}); insert ({0, +1, INF});
insert ({-1, 0, INF}); insert ({0, -1, INF});
Yi
auto prv(auto it) { return -- (it == begin() ? end() it); ¥
auto nxt (auto it) { return (++it == end() ? begin() it); }
bool bad(auto it) {
auto 1 = xit, pl = *prv(it), nl = *nxt(it);
T4 x, y; T2 d; tie(x, y, d) = LinelIntersection(pl, nl);
// auto [z, y, d] = Linelntersection(pl, nl);
T4 sat = l.a » x + 1.b » y - (T4)l.c » d;
if (d < 0 && sat < 0) {
clear(); // infeasible
}
return d > 0 && sat <= 0 || d == 0 && sat < 0;
}
void Cut (Line 1) { // add az + by <= ¢
if (empty()) return;
auto it = insert (1l);
if (bad(it)) { erase(it); return; }
while (size()) {
auto nit = nxt (it);
if (bad(nit)) erase(nit);
else break;
}
while (size()) {
auto pit = prv(it);
if (bad(pit)) erase(pit);
else break;
}
}
double Maximize(T a, T b) { // mazx azx + by
if (empty()) return -1/0.;
auto it = lower_bound({-b, a});
if (it == end()) it = begin();
// auto [z, y, d] = Linelntersection(*prv(it), xit);
// return (1.0 * a x o + 1.0 * b x y) / d;
}

double Area() {
long double total = 0.;

for (auto it = begin(); it != end(); ++it) {
T4 x1, yl; T2 dl; tie(xl, yl, dl) = LineIntersection (*prv
(it), =it);
T4 x2, y2; T2 d2; tie(x2, y2, d2) = Linelntersection(xit,
*nxt (it));

// auto [z1, yl, d1] = Linelntersection(«prv(it), *it);
// auto [xz2, y2, d2] = Linelntersection(*it, *nzt(it));

total += (1.0L » x1/dl % y2/d2 - 1.0L * x2/d2 » yl/dl);
}
return total » 0.5L;
}
Yi
int main() {

Ul stack.py

//ifstream cin(”camera.in”);
//ofstream cout(”camera.out”);
int t; cin >> t;
while (t--) {
int n; cin >> n;
vector<T> x(n), y(n);
for (int 1 = 0; i < n;
cin >> x[1] >> y[i];
HalfplaneSet HS;
for (int j = n -1, 1 =0; 1 < n; J = i++)
HS.Cut (LineFromPoints (x[J], vI[3jl, x[i], yI[il]
)

cout << fixed << setprecision(6) << HS.Area/(
’

++1)

}
return O;

}

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW
order, with no collinear points). Returns true if point lies within the hull. If
strict is true, points on the boundary aren’t included.

Time: O (log N)
"sideOf.h",

"Point.h", 71446b, 14 lines

typedef Point<1l1l> P;

"OnSegment.h"

bool inHull (const vector<P>& 1, P p, bool strict = true) {
int a =1, b = sz(l) - 1, r = !strict;
if (sz(l) < 3) return r && onSegment (1[0], l.back(), p);
if (sideOf(1([0], 1l[al, 1[bl) > 0) swap(a, b);
if (sideOf(1[0], 1l[al, p) >= r || sideOf(1[0], 1l[b], p)<= -r)
return false;
while (abs(a - b) > 1) {
int ¢ = (a + b) / 2;
(sideOf (1[0], 1l[c]l, p) >0 ? b a) = c;
}
return sgn(l[a].cross(1l[b], p)) < r;

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw
and have no collinear points. lineHull(line, poly) returns a pair describing
the intersection of a line with the polygon: e (—1, —1) if no collision, e (¢, —1)
if touching the corner ¢, ® (7,) if along side (i,74 1), ® (¢, j) if crossing sides
(2,i4+1) and (j,j+1). In the last case, if a corner ¢ is crossed, this is treated
as happening on side (4,7 4+ 1). The points are returned in the same order as
the line hits the polygon. extrVertex returns the point of a hull with the
max projection onto a line.

Time: O (logn)

"Point.h" 7cf45b, 39 lines

#define cmp (i, j) sgn(dir.perp() .cross(poly[(i)%n]-poly[(J)%n]))
#define extr (i) cmp(i + 1, i) >= 0 && cmp(i, i —= 1 + n) <0
template <class P> int extrVertex(vector<P>& poly, P dir) {
int n = sz(poly), lo = 0, hi = n;
if (extr(0)) return 0;
while (lo + 1 < hi) {
int m = (lo + hi) / 2;
if (extr(m)) return m;
int 1s = cmp(lo + 1, lo), ms =
(s <ms || (ls == ms && 1ls == cmp(lo,

cmp(m + 1, m);
m)) ? hi
}
return lo;
}

#define cmpL (i) sgn(a.cross(poly[i],
template <class P>

b))

array<int, 2> lineHull(P a, P b, vector<P>& poly) {
int endA = extrVertex(poly, (a - b).perp());
int endB = extrVertex(poly, (b - a).perp());

if (cmpL(endA) < 0 || cmpL(endB) > 0)
return {-1, -1};
array<int, 2> res;
rep (i, 0,2) {
int lo = endB, hi = endA, n = sz (poly);
while ((lo + 1) $ n != hi) {
int m = ((lo + hi + (lo < hi 2 0 n)) / 2) % n;
(cmpL (m) == cmpL(endB) ? lo hi) = m;
}
res[i] = (lo + !cmpL(hi)) % n;
swap (endA, endB);
}
if (res([0] == res[l]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res([1l]))
switch ((res[0] - res[l] + sz (poly) + 1) % sz (poly)) {
case 0: return {res[0], res[0]};
case 2: return {res[1l], res[l]};
}
return res;

}

PolygonStab.h
Description: Stab the polygon isi, with line a, b, find the longest segment
with valid stab
Time: O (N?log N)
"Point.h"
P isi[1005];
template<class P>
P PolygonStab (P a, P b) {
vector<intersectPoint> all;
for (int k = 1; k <= n; k++) {
auto res = linelnter(a, b, isifk],
11);
if (res.fi == 1 && onSegment (isi[k],
: 1], res.se)) {
all.pb({res.se, {a.ccw(b,
n?k+1 11)33);

5aa689, 26 lines

isi[k + 1 <=n ?2 k + 1

isi[k + 1 <=n 2 k + 1

isi[k]), a.ccw(b, isi[k + 1 <=
}

}

sort (all.begin(), all.end());

int isInside = -1, pre;

LD curAns = 0; P 1lst;

for (int k = 0; k < all.size();
if (isInside >= 0) curAns +=

dist ();

if (allfk].se.fi x all[k].se.se == -1) isInside =

k++) {
(all(k].fi - all[k - 1].fi).
-isInside

i
else if (isInside == 0) isInside = (all[k].se.fi + all[k].
se.se) x pre;
else {
pre = (alll[k].se.fi + all[k].se.se)

isInside = 0;

* isInside;

}

ans = doubleMax (ans, curAns);

if (isInside == -1) curAns = 0,
all.size()) - 1 2 k + 1

1st =
0].fi;

alllk + 1 <= (int) (

}

return curAns;

}

8.4 Misc. Point Set Problems
ClosestPair.h

Description: Finds the closest pair of points.
Time: O (nlogn)

"Point.h" ac4la6, 17 lines

typedef Point<ll> P;
pair<P, P> closest (vector<P> v) {
assert (sz(v) > 1);

PointInsideHull LineHullIntersection PolygonStab ClosestPair ManhattanMST kdTree 20

set<P> S;
sort (all(v), [](P a, P b) { return a.y < b.y; });
pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
int j = 0;
for (P p v) {
P d{1 + (11)sqgrt(ret.first), 0};
while (v[j].y <= p.y - d.x) S.erase(v[j++]);
auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
for (; lo != hi; ++1o)
ret = min(ret, {(xlo - p).dist2(), {xlo, p}});
S.insert (p);
}
return ret.second;

}

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaran-
teed to contain a minimum spanning tree for the graph with edge weights
w(p, q) = —p.Xx - @.x— + —p.y - q.y—. Edges are in the form (distance,
src, dst). Use a standard MST algorithm on the result to find the final MST.
Time: O (NlogN)

"Point.h" df6f59, 23 lines

typedef Point<int> P;

vector<array<int, 3>> manhattanMST (vector<P> ps) {
vi id(sz (ps));
iota(all(id), 0);
vector<array<int,
rep(k,0,4) {

3>> edges;

sort (all(id), [&] (int i, int j) {
return (ps[il-ps[j]).x < (ps[jl-ps[il).y;});
map<int, int> sweep;
for (int 1 id) A
for (auto it = sweep.lower_bound(-ps[i].y);
it != sweep.end(); sweep.erase(it++)) {
int j = it->second;
P d = psli] - psl[Jl;

if (d.y > d.x) break;

edges.push_back ({d.y + d.x, i, j});
}
sweep[-ps[i].y] = i;
}
for (P& p ps) if (k & 1) p.x = -p.x; else swap(p.x, pP.Y);
}
return edges;
}
kdTree.h
Description: KD-tree (any dimension) 1£9006. 73 linos
using T = long long;
constexpr int DIM = 2;
using P = array<T, DIM>;

const T INF = numeric_limits<T>::max();

struct Node {
P pt; // if this is a leaf, the single point in it
P lo_bound, hi_bound;
Node *first = 0, *second = 0;

T distance(const P& p) { // min squared distance to a point

Tr=0;

rep(i, 0, DIM) {
T d = pl[i] - max(lo_bound[i], min(hi_bound[i], pl[i]));
r += d * d;

}

return r;

}

Node (vector<P>&& vp) pt (vp[0]) {

Ul stack.py

rep(i, 0, DIM) {
lo_bound[i] = INF; hi_bound[i] = -INF;
}
for (const P & p : vp) {
rep(i, 0, DIM) {
lo_bound[i] = min(lo_bound[i], pl[il);
hi_bound[i] = max (hi_bound[i], pl[il]);

}

if (sz(vp) > 1) {
// split on x if width >= height (not ideal...)
pair<T, int> biggest = { -1, -1};
rep(i, 0, DIM)

biggest = max(biggest, {hi_bound[i] - lo_bound([i], i});

int i = biggest.second;

sort (all(vp), [&] (const P & a, const P & b) { return ali
< Db[il; 1}

// divide by taking half the array for each child (not
// best performance with many duplicates in the middle)
int half = sz (vp) / 2;

first = new Node ({vp.begin(), vp.begin() + half});
second = new Node ({vp.begin() + half, vp.end()});

}
Yi

struct KDTree {
Node* root;
KDTree (const vector<P>& vp) : root (new Node({all(vp)})) {}

pair<T, P> search(Node *node, const P& p) {
if (!'node->first) {
// uncomment if we should not find the point itself:
// if (p == node—=>pt) return {INF, P()};
return {node->distance (p), node->pt};

}

Node *f = node->first, *s = node->second;

T bfirst = f->distance(p), bsec = s->distance (p);
if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);

// search closest side first, other side if meeded
auto best = search(f, p);
if (bsec < best.first)
best = min(best, search(s, p));
return best;

}

// find mearest point to a point, and its squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest (const P& p) {
return search (root, p);
}
}i

FastDelaunay.h

Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in ’circ’. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][O0], ...}, all counter-clockwise.

Time: O (nlogn)

"Point.h" eefdf5, 88 lines
typedef Point<ll> P;

typedef struct Quadx Q;

typedef _ int128_t 111; // (can be Il if coords are < 2e4)

P arb (LLONG_MAX, LLONG_MAX); // mot equal to any other point

struct Quad {

FastDelaunay PolyhedronVolume Point3D 3dHull

Q rot, o; P p = arb; bool mark;
P& F() { return r()->p; }

Q& r() { return rot->rot; }

Q prev() { return rot->o->rot; }

Q next () { return r()->prev(); }
b o+H;

bool circ(P p, P a, P b, P c) { // is p in the circumcircle?

111 p2 = p.dist2(), A = a.dist2()-p2,

B = b.dist2()-p2, C = c.dist2()-p2;

return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;
}
Q makeEdge (P orig, P dest) {

Q r =H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};

H = r->0; r->r()->r() = r;

rep(i,0,4) r = r->rot, r->p = arb, r->0 =1 & 1 ?2 r : r->r();
r->p = orig; r->F() = dest;
return r;
}
void splice(Q a, Q b) {
swap (a->o->rot->o, b->o->rot->0); swap(a—->o, b->0);
}

Q connect(Q a, Q b) {
Q g = makeEdge (a->F (), b->p);
splice(q, a->next());
splice(g—>r (), b);
return qg;

}

pair<Q, Q> rec (const vector<P>& s) {
if (sz(s) <= 3) {

Q a = makeEdge(s[0], s[l]), b = makeEdge(s[l], s.back());
if (sz(s) == 2) return { a, a->r() };

splice(a->r (), b);

auto side = s[0].cross(s[1l], s[2]);

Q ¢ = side ? connect(b, a) : 0;

return {side < 0 ? c->r() : a, side < 0 2?2 c : b->r() };

}

#define H(e) e->F (), e->p
#define valid(e) (e->F () .cross (H(base)) > 0)
Q A, B, ra, rb;
int half = sz (s) / 2;
tie(ra, A) = rec({all(s) - half});
tie (B, rb) = rec({sz(s) - half + all(s)});
while ((B->p.cross(H(A)) < 0 && (A = A->next())) ||
(A->p.cross(H(B)) > 0 && (B = B->r()->0)));

Q base connect (B->r (), A);
if (A->p == ra->p) ra = base->r();
if (B->p == rb->p) rb = base;

#define DEL (e, init, dir) Q e = init->dir; if (valid(e)) \
while (circ(e->dir->F (), H(base), e—>F())) { \
Q0 t = e->dir; \

splice(e, e->prev()); \
splice(e->r (), e->r()->prev()); \
e->0 = H; H=9¢e; e =t; \
}
for (;;) {
DEL(LC, base->r (), o); DEL(RC, base, prev());
if (!valid(LC) && !valid(RC)) break;
if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
base = connect (RC, base->r());
else
base = connect (base->r (), LC->r());
}
return { ra, rb };

21

vector<P> triangulate (vector<P> pts) {

sort (all(pts)); assert (unique (all (pts)) == pts.end());

if (sz(pts) < 2) return {};

Q e = rec(pts) .first;

vector<Q> q = {e};

int gi = 0;

while (e->0->F().cross(e—>F(), e->p) < 0) e = e->0;
#define ADD { Q ¢ = e; do { c->mark = 1; pts.push_back(c->p); \

g.push_back(c->r()); ¢ = c->next(); } while (c != e); }

ADD; pts.clear();

while (gi < sz (q)) if (! (e = g[gi++])->mark) ADD;

return pts;

}

8.5 3D
PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should

point outwards. 3058c3, 6 lines

template<class V, class L>

double signedPolyVolume (const V& p, const L& trilist) {
double v = 0;
for (auto i : trilist) v += pl[i.a].cross(p[i.b]).dot(pli.c]);
return v / 6;

}

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or

long long. 8058ae, 32 lines

template<class T> struct Point3D {
typedef Point3D P;
typedef const P& R;
T %X, Yy, Zj
explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
bool operator< (R p) const {
return tie(x, y, z) < tie(p.x, p.y, p.2); }
bool operator==(R p) const {
return tie(x, y, z) == tie(p.x, p.y, p-.2); }

P operator+ (R p) const { return P (x+p.x, yt+p.y, zt+p.z); }
P operator- (R p) const { return P(x-p.x, y-p.y, z-p.z); }
P operator* (T d) const { return P (xxd, y=xd, zxd); }
P operator/(T d) const { return P(x/d, y/d, z/d); }
T dot (R p) const { return x*xp.x + y*p.y + z*p.z; }
P cross (R p) const {

return P (y*p.z — zZ*pP.y, Z*P.X — X*P.Z, X*P.Y — Y*P.X);
}

T dist2() const { return x*x + y*y + z*z; }

double dist () const { return sqgrt ((double)dist2()); }
//Azimuthal angle (longitude) to z—azis in interval [—pi, pi]
double phi() const { return atan2(y, x); }

//Zenith angle (latitude) to the z—azis in interval [0, pi]
double theta() const { return atan2 (sqrt (xxx+yxy),z); }

P unit () const { return xthis/(T)dist(); } //makes dist()=1
//returns unit vector normal to *this and p
P normal (P p) const { return cross(p).unit(); }

//returns point rotated ’‘angle’ radians ccw around axis
P rotate (double angle, P axis) const {
double s = sin(angle), ¢ = cos(angle); P u = axis.unit();
return uxdot (u) x (1-c) + (xthis)*c - cross(u) *s;
}
Yi

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No
four points must be coplanar*, or else random results will be returned. All
faces will point outwards.

Time: O (n2)

"Point3D.h" 5b45fc, 49 lines

Ul stack.py

typedef Point3D<double> P3;

struct PR {

void ins(int x) { (a == -1 ? a : b) = x; }
void rem(int x) { (a == x 2?2 a : b) = -1; }
int cnt() { return (a != -1) + (b != -1); }

int a, b;
Yi
struct F { P3 g; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
assert (sz(A) >= 4);
vector<vector<PR>> E(sz(3d),
#define E(x,y) E[f.x][f.y]
vector<F> FS;
auto mf = [&] (int i, int Jj, int k,
P3 g = (A[J] - A[i]) .cross((A[k]
if (g.dot (A[1l]) > g.dot(A[i]))
a=q=* -1;
F f{q, i, 3, k};
E(a,b) .ins(k); E(a,c).ins(J);
FS.push_back (f);
}i
rep(i,0,4)
mf (i, j, k,

vector<PR>(sz (d), {-1, -1}));

int 1) {
- A[i]));

E(b,c).ins (1);

rep(Jj,i+1,4) rep(k,Jj+1,4)
6-1-3-%);

rep(i,4,sz(BA)) {

rep(3,0,sz(FS)) {
F £ =FsS[j];
if(f.g.dot (A[
E(a,b) .rem(
E(a,c) .rem(
E(b,c) .rem(
swap (FS[j——
FS.pop_back () ;

}

> f.g.dot (A[f.al)) {

}
int nw = sz (FS);
rep(3j,0,nw) {
F £ =FS[]l;
#define C(a, b, c) if
C(a, b, c); C(a, c,

(E(a,b) .cnt () != 2)
b); C(b, ¢, a);

mf(f.a, f.b, i, f.c);
}

¥

for (F& it
Alit.c]

return FS;

FS) if ((A[it.Db]
- Alit.a]) .dot (it.q)

- A[it.a]) .cross(
<= 0) swap(it.c, it.b);

Yi

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius ra-
dius between the points with azimuthal angles (longitude) f1 (¢1) and 2 (¢2)
from x axis and zenith angles (latitude) t1 (1) and t2 (02) from z axis (0 =
north pole). All angles measured in radians. The algorithm starts by con-
verting the spherical coordinates to cartesian coordinates so if that is what
you have you can use only the two last rows. dx*radius is then the difference
between the two points in the x direction and d*radius is the total distance

between the points. 611f07, 8 lines

double sphericalDistance (double fl, double t1,

double f2, double t2, double radius) {
double dx = sin(t2)xcos(f2) - sin(tl)=*cos(fl);
double dy = sin(t2)»*sin(f2) - sin(tl)xsin(fl);
double dz = cos(t2) - cos(tl);
double d = sqgrt (dxxdx + dyxdy + dz=*dz);

return radius+2xasin(d/2);

Strings (9)
Regex.h

Description: You can use the following special characters: “$.x2| () {}
Time: O (NM)

<regex>, <iostream> 88154e, 15 lines

using namespace std;

int main () {
string s ("this subject has a submarine as a subsequence");
smatch m; regex e (" (sub) ([* 1x)"); // matches words

beginning by “sub”
// regex search will match the first occurence

if (regex_match (begin(s), end(s), regex("this .+"))) cout << "
OK" << endl;
while (regex_search (s, m, e)) {
for (auto x : m) cout << x << " ";
cout << endl; s = m.suffix().str();
}
s = "this subject has a submarine as a subsequence";

cout << regex_replace (s,e,"sub-52");

return 0;

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends
at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all
occurrences of a string.

Time: O (n) 344602, 27 lines

vi pi(const string& s) {

vi p(sz(s));

rep(i,1,sz(s)) {
int g = p[i-1];
while (g && s[i] != s[g]l) g = plg-1];
pli]l = g + (s[i] == slgl);

}

return p;

}

vi match (const string& s, const stringé& pat) {

vi p = pi(pat + '\0’ + s), res;
rep (i, sz (p)-sz(s),sz(p))
if (p[i] == sz(pat)) res.push_back(i - 2 % sz (pat));
return res;
}
vvi automaton (string s, char ch, int charSize) {

s += '$’; vi ff = pi(s);
vvi aut(sz(s), vi(charSize));
rep (i, 0, sz(s)) {

]

rep(c, 0, charSize) {
aut[i][c] = ((i > 0 && ch + ¢ != s[i]) 2 aut[ff[i - 1]][c
] ¢ (1 + (ch + c ==5s[i])));
}
}
return aut;

Zfunc.h

Description: z[x] computes the length of the longest common prefix of sli:]
and s, except z[0] = 0. (abacaba -> 0010301)

sphericalDistance Regex KMP Zfunc Manacher MinRotation SuffixArray 22

Time: O (n) ce09e2, 12 lines
vi Z(const string& S) {

vi z(sz(S));

int 1 = -1, r = -1;

rep(i,1,sz(S)) {

z[i] =1 > r ?2 0 : min(r - 1, z[i - 11);
while (i + z[i] < sz (S) && S[i + z[i]] == S[z[i]])
z[1]++;
if (i + z[1] > 1)
1 =1, r =1+ z[1i];
}
return z;
}
Manacher.h
Description: For each position in a string, computes p[0][i] = half length
of longest even palindrome around pos i, p[1][i] = longest odd (half rounded
down).
Time: O(N) e7ad79, 13 lines
array<vi, 2> manacher (const string& s) {
int n = sz (s);
array<vi,2> p = {vi(n+l), vi(n)};
rep(z,0,2) for (int i=0,1=0,r=0; 1 < n; i++) {
int t = r-i+!z;
if (i<r) plz][i] = min(t, plz][1+t]);
int L = i-p[z][i], R = i+p[z][i]-!z;
while (L>=1 && R+1<n && s[L-1] == s[R+1])
plz] [i]++, L--, R++;
if (R>r) 1=L, r=R;
}
return p;

}

MinRotation.h
Description: Finds the lexicographically smallest rotation of a string.
Usage: rotate (v.begin(), v.begin()+minRotation(v), v.end());

Time: O (N) d07a42, 8 lines
int minRotation(string s) {
int a=0, N=sz(s); s += s;
rep (b,0,N) rep(k,0,N) {
if (atk == || s[atk] < s[b+k]) {b += max(0, k-1); break;}
if (s[a+k] > s[b+k]) { a = b; break; }
}
return a;

}

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index
of the suffix which is i’th in the sorted suffix array. The returned vector
is of size n 4+ 1, and sa[0] = n. The lcp array contains longest common
prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sali],
sa[i-1]), 1lcp[0] = 0. The input string must not contain any zero bytes.

Time: O (nlogn) 38db9f, 23 lines

struct SuffixArray {

vi sa, lcp;
SuffixArray (strings s, int 1im=256) { // or basic_string<int>
int n = sz(s) + 1, k =0, a, b;
vi x(all(s)+1l), y(n), s(max(n, lim)), rank(n);
sa = lcp = vy, iota(all(sa), 0);
for (int j =0, p=0; p <n; j=max(l, j = 2), lim = p) {
p = J, iota(all(y), n - J);
rep(i,0,n) if (sali] >= j) ylp++] = sali]l - J;
fill(all(ws), 0);
rep(i,0,n) ws[x[i]]++;
rep(i,1,1lim) ws[i] += ws[i - 1];
for (int i = n; i--;) sal--ws[x[y[i]]]] = y[i];
swap(x, y), p = 1, x[sa[0]] = O;
rep(i,1,n) a = sal[i - 1], b = sal[i], x[b] =
(yla] == y[b] && yla + J] == y[b + 3]1) 2 p - 1 : pt+;
}
rep(i,1l,n) rank[sal[i]l] = 1i;

Ul stack.py

for
for

(int 1 = 0, J;
(k && k——, j =
s[i + k] == s[j

i <n - 1; lcplrank[i++]] = k)
alrank[i] - 1];
+ k1; k++);

}i

SuffixTree.h

Description: Ukkonen’s algorithm for online suffix tree construction. Each
node contains indices [1, r) into the string, and a list of child nodes. Suffixes
are given by traversals of this tree, joining [1, r) substrings. The root is 0 (has
1 = -1, r = 0), non-existent children are -1. To get a complete tree, append
a dummy symbol — otherwise it may contain an incomplete path (still useful
for substring matching, though).

Time: O (26N) aacOb8, 50 lines

SuffixTree Aho3S Alien SlopeTrick

Aho3S.h

Description: Aho-Corasick by Kak Ucup 08beab. 51 lines

struct SuffixTree {

enum { N = 200010, ALPHA = 26 }; // N ~ Z2+mazlen+10
int toi(char c) { return c - ’"a’; }
string a; // v = cur node, q¢ = cur position

int t[N] [ALPHA],1[N],xr[N],p[N],s[N],v=0,g=0,m=2;

void ukkadd(int i, int c) { suff:
if (rlvl<=q) {
if (t[v]llcl==-1) { tlv]l[cl=m; 1lm]=i;
plmt+]=v; v=s[v]; g=r[v]; goto suff; }
v=t[v][c]; g=1[v];
}
if (g==-1 || c==toi(alqg])) gt+; else {
1[mtl]=1i; plm+l]=m; 1im]=1[v]; rlm]=qg;
plml=p[v]; tlm]lc]=m+l; tm][toi(alqgl)l=v;
livl=q; plvl=m; tlplm]](toi(alllm]])]=m;
v=s[p[m]]; g=l[m];
while (g<r([m]) { v=t([v][toi(alql)]l; gt=rlvl-1[v]l; }
if (g==r[m]) s[m]=v; else s[m]=m+2;
g=r([v]-(g-r[m]); m+=2; goto suff;
}
}
SuffixTree (string a) a(a) {
fill(r,r+N,sz (a));
memset (s, 0, sizeof s);
memset (t, -1, sizeof t);
£ill(t[1],t[1]+ALPHA,O);
s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1l] = O;
rep(i,0,sz(a)) ukkadd(i, toi(alil));
}
// example: find longest common substring (uses ALPHA = 28)
pii best;
int lcs(int node, int il, int i2, int olen) {
if (l[node] <= il && il < r[node]) return 1;
if (l[node] <= i2 && 12 < r[node]) return 2;
int mask = 0, len = node ? olen + (r[node] - l[node]) : O;
rep(c, 0,ALPHA) if (t[node][c] != -1
mask |= lcs(t[node][c], i1, i2, len);
if (mask == 3)
best = max(best, {len, r[node] - len});
return mask;
}
static pii LCS(string s, string t) {
SuffixTree st (s + (char) ("z’ + 1) + t + (char) ('z' + 2));
st.lcs (0, sz(s), sz(s) + 1 + sz(t), 0);
return st.best;

}
Yi

struct AhoCorasick {

int trie([N][26], fail[N], saiz;
AhoCorasick () {
memset (trie[0],-1,sizeof trie([0]);
saiz = 0;
}
void add(string str) {
int cur = 0;
for(int i = 0 ; i < str.length() ; i++) {
//checkChar(str[i]) ;
int nex = str[i] - 'a’;
if (trie[cur] [nex] == -1) {
trie[cur] [nex] = ++saiz;
memset (trie[saiz],-1,sizeof trie[saiz]);
}
cur = trie(cur] [nex];
}
}
void build() {
queue<int> qg;
fail[0] = 0;
for(int 1 = 0 ; 1 < 26 ; i++)
if (trie[0][i] == -1)
trie[0][i] = O;
else {
int nex = trie[0][i];
fail[nex] = 0;
g.push (nex) ;
}
while (!g.empty()) {
int now = g.front();
g.pop () ;
for(int 1 = 0 ; 1 < 26 ; i++)
if (trie[now] [1] == -1)
trie[now] [1] = trie[faill[now]][i];
else {
int nex = triel[now] [1];
fail[nex] = trie[faill[now]][i];
g.push (nex) ;
}
}
}
int getIndex(string str) {
int cur = 0;
for(int i = 0 ; i < str.length() ; i++) {
//checkChar(str[i]);
cur = trief[cur][str[i] - "a’];
}
return cur;
}
Yi

Various (10)

10.1 Dynamic programming
Alien.h

Description: Solution for alien

Time: O (NlogK) 8382fb, 39 lines

pi trial(lint 1){
cht.clear();
for (int i=1; i<=v.size(); i++){
cht.add_line(2 = 2 x v[i-1].first, dp[i-1].first +
211 » v[i-1].first = v[i-1].first, dpl[i-1].second);
dp[i] = cht.query(-v[i-1].second);

23

dp[i].first += 211 » v[i-1].second % v[i-1].second + 1; //
l is penalty
dp[i].second++;
if(i != v.size()){
lint ¢ = max (011, v[i-1].second - v[i].first);
dp[i].first == 2 x c % c;

}
}
return dp(v.size()];
}
long long take_photos(int n, int m, int k, std::vector<int> r,
std::vector<int> c) {
vector<pi> w;
for (int 1i=0; i<n; i++){
if(r[(i] > c[i]) swap(r[i]l, clil);
w.push_back ({r[i]1-1, c[i]});

}

sort (w.begin(), w.end(), [&] (const pi &a, const pi &b){

return pi(a.first, -a.second) < pi(b.first, -b.second);
1)
for (auto &i : w){
if(v.empty () || v.back().second < i.second){
v.push_back (i) ;
}
}
lint s = 0, e = 2el2;
while(s != e){
lint m = (s+e)/2;

// See how many groups are made with penalty 2¥mitI1

if(trial(2 » m + 1) .second <= k) e = m;
else s = m+1;

}

return trial(s * 2).first / 2 - s * k;

SlopeTrick.h
Description: Slope Trick making it increasing with cost to up and down
different

Time: O (N log N) 453£59, 41 lines

int solve() {
int n; cin >> n;
vector<LL> isi(n);
vector<PLL> cost (n);

trav(cur, isi) cin >> cur;
trav (cur, cost) cin >> cur.fi;
trav(cur, cost) cin >> cur.se;

LL ans = 0;
priority_queue <PLL> solve;
rep(i, 0, n) {
auto &cur = cost[i];
// Push ke isi[i], gradiennya cur.fi + cur.se
solve.push ({isi[i], cur.fi + cur.se});
// Push lagi buat kurangin gradien
solve.push ({max (isi[i], solve.top().fi), -cur.fi});
ans += (solve.top().fi - isi[i]) = cur.fi;
// Maintain minimum
while (solve.size() >= 2){
PLL now = solve.top(); solve.pop();
PLL pre = solve.top(); solve.pop();
// Merge dua slope

if (now.fi == pre.fi){
now.se += pre.se;
solve.push (now) ;
continue;

telse if (pre.fi < now.fi && now.se <= 0){
// Slope trick, geser opt
pre.se += now.se;

Ul stack.py

solve.push (pre);

ans += (now.fi - pre.fi) % now.se;
continue;
telse({

solve.push (pre);
solve.push (now) ;
break;
}
}

}

cout << ans << endl;

return 0;

}
SosDP.h
Description: Consider using FWHT 481e5E. 9 linos
void sos () {
//Dp[mask] contain all numbers of submask
for (int i = 0; 1 <= 23; 1i++)
for (int mask = (1LL << 24) - 1; mask >= 0; mask—-)
if (mask & (1LL << i)) dpl[mask] += dp[mask ~ (1LL << 1i)];
LL ans = 0;
for (int mask = (1LL << 24) - 1; mask >= 0; mask—-—-)
dp[mask] = n - dpl[mask], ans "= (dp[mask] * dplmask]);
}
KnuthDP.h
Description: When doing DP on intervals: a[i][j] = min;<r<;(alé][k] +

alk][j]) + f(i,j), where the (minimal) optimal k increases with both 4
and j, one can solve intervals in increasing order of length, and search
k = pli][j] for ali][j] only between p[i][j — 1] and p[i + 1][j]. This is
known as Knuth DP. Sufficient criteria for this are if f(b,c) < f(a,d) and
f(a,c) + f(b,d) < f(a,d) + f(b,c) for all a < b < ¢ < d. Consider also:
LineContainer (ch. Data structures), monotone queues, ternary search.

s 2
Time: O (N?) 701e4d, 20 lines

int main() {
for (int i = 1; 1 < n; 1i++) {
memo[1][1i + 1] = isif[i] + isi[i + 1];
opt[i][i + 1] = 1i;
}
for (int i = 2; 1 <= n; 1i++) {
//Compute for i+1 segment
for (int j = 1; j + 1 <= n; Jj++) {
LL cur = LINF;
for (int k = opt[j][J + i - 1]; k <= opt[j + 1]1[F + il; k
++) |
LL now = memo[j][k] + memo[k + 1][] + 1i];
if (cur > now) {
cur = now;
opt [Jj][] + 1] = k;
}
}
memo[j][j + i] = cur + (psum[j + 1i] - psum([]j - 11);
}
}
}
DivideAndConquerDP.h
Description: Given a[i] = ming,()<k<ni(s)(f(4, k)) where the (minimal)

optimal k increases with ¢, computes a[i] for i = L..R — 1.

Time: O ((N + (hi — lo))log N) d38d2b, 18 lines

struct DP { // Modify at will:
int lo(int ind) { return 0; }
int hi(int ind) { return ind; }
11 f(int ind, int k) { return dplind][k]; }

void store(int ind, int k, 11 v) { res[ind] = pii(k, v); }

void rec(int L, int R, int HI) {

if (L >= R) return;

int mid = (L + R) >> 1;

pair<ll, int> best (LLONG_MAX, LO);

rep (k, max(LO,lo(mid)), min (HI,hi (mid)))
best = min(best, make_pair (f(mid, k),

store (mid, best.second, best.first);

rec (L, mid, LO, best.second+l);

rec (mid+1l, R, best.second, HI);

int LO,

k))i

}
void solve (int L,
bi

int R) { rec(L, R, INT_MIN, INT_MAX); }

10.2 Debugging tricks

e signal (SIGSEGV, [] (int) { _Exit(0); 1});
converts segfaults into Wrong Answers. Similarly one can
catch SIGABRT (assertion failures) and SIGFPE (zero
divisions). _GLIBCXX_DEBUG failures generate SIGABRT
(or SIGSEGV on gec 5.4.0 apparently).

e feenableexcept (29); kills the program on NaNs (1),
0-divs (4), infinities (8) and denormals (16).
10.3 Optimization tricks

_ builtin_ia32_ldmxcsr (40896); disables denormals
(which make floats 20x slower near their minimum value).

10.3.1 Bit hacks

e x & —x is the least bit in x.

e for (int x = m; x;) { ——x &= m; ... } loops
over all subset masks of m (except m itself).

e C = X&X, T x+c; (((r°x) >> 2)/c) | risthe

next number after x with the same number of bits set.

rep(b,0,K) rep(i,0, (1 << K))
if (i & 1 << b) D[1] += D[i" (1 << Db)];
computes all sums of subsets.

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is
constant but not known at compile time. Returns a value congruent to a

(mod b) in the range [0, 2b). 751202, 8 lines

SosDP KnuthDP DivideAndConquerDP FastMod Random ClockTime FastInput BumpAllocator StableMarriage MoserCircle 24

LL getRange (LL a,
LL ran = b-a+l;
return (rng()S%ran)+a;

LL b){

ClockTime.h

Description: Elapsed time from the beginning of running program

Usage: cek_time () 0453a9, 5 lines

clock_t first_attempt =
inline void cek_time () {
clock_t cur = clock()- first_attempt;
cerr<<"TIME "<< (double) cur/CLOCKS_PER_SEC<<endl;

clock();

FastInput.h

Description: Read an integer from stdin. Usage requires your program to
pipe in input from file.

Usage: ./a.out < input.txt

Time: About 5x as fast as cin/scanf. 7b3e70. 17 lines

typedef unsigned long long ull;

struct FastMod {
ull b, m;
FastMod(ull b) : b(b), m(-1ULL / b) {}
ull reduce(ull a) { // a % b+ (0 or b)

return a - (ull) ((__uintl28_t(m) = a) >> 64) x b;
}
Yi
Random.h
Description: Random using mersenne twister
Usage: rng ()

<random>, <chrono> 99f56¢, 7 lines

mt19937_64 rng(chrono::steady_clock::now().time_since_epoch() .
count ());
// shuffle(isi.begin(),isi.end(),rng);

inline char gc() { // like getchar()
static char buf[l << 16];
static size_t bc, be;
if (bc >= be) {
buf (0] = 0, bc = 0;
be = fread(buf, 1,
}
return buf [bc++]; // returns 0 on EOF
}

sizeof (buf), stdin);

int readInt () {
int a, c;

while ((a = gc()) < 40);

if (a == '"-") return -readInt();

while ((c = gc()) >= 48) a = a % 10 + ¢ - 480;
return a - 48;

BumpAllocator.h
Description: When you need to dynamically allocate many objects and
don’t care about freeing them. "new X” otherwise has an overhead of some-

thing like 0.05us + 16 bytes per allocation. 745db2. 8 lines

// Either globally or in a single class:
static char buf[450 << 20];
void+ operator new(size_t s) {
static size_t 1 = sizeof buf;
assert (s < 1);
return (voidx)&buf[i -= s];
}

void operator delete (voidx) {}

10.4 Known Problems
StableMarriage.h

Description: While there is a free man m: let w be the most preferred
woman to whom he has not yet proposed, and propose m to w. If w is free,
or is engaged to someone whom she prefers less than m, match m with w,
else deny proposal.

MoserCircle.h

Description: Determine the number of pieces into which a circle is divided
if n points on its circumference are joined by chords with no three internally
concurrent. Solution: g(n) = nC4 + nC2 + 1.

UL stack.fyhickenMcNugget EulerFaceFormula CayleyFormula PickTheorem JosephusProblem ErdosGallai OpenPit 2sat Sparse2D NarrowRectangle 25

ChickenMcNugget.h isi[i] = a - b; int m; cin >> m; bool solve() {
Description: Chicken McNugget Theorem states that for any two relatively while (m——) { int v; cin >> v; edges.pb({i, v}); } values.assign (N, -1);
prime positive integers m,n, the greatest integer that cannot be written in | } val.assign(2xN, 0); comp = val;
the form am+bn for nonnegative integers a,b is mn — m - n. PushRelabel solve(n + 2); rep(i,0,2+N) if (!comp[i]) dfs(i);
for (int i = 1; 1 <= n; i++) { rep(i,0,N) if (comp[2xi] == comp[2xi+1]) return O;
int curcost = abs(isi[il]); return 1;
EulerFaceFormula.h if (isi[i] == curcost) ans += curcost, solve.add_edge(0, i, }
Description: V- E + F = 2 [V: vertices E: edges F: faces] curcost); bi
else solve.add_edge(i, n + 1, curcost);
} e toes) solve.aad cdge (o e £ : ../data-structures/Sparse2D.h
trav(edge, edges) solve.add_edge(edge.se, edge.fi, INF); Description: Offline solve 2d commutative query This query is exclusive
CayleyFormula.h cout << ans - solve.maxflow (0, n + 1) << endl; v v

2 1-based, change to [st, ed). Reduce to 0-based indexing!

Time: O (N log? N), query in O (1)

../graph/Zsat.h const int LOGN = 13;
Description: Calculates a valid assignment to boolean variables a, | int sparset [LOGN] [LOGN] [205] [205];

Description: There are n™ ™ “ spanning trees of a complete graph with n la-

beled vertices. Spanning Tree of Complete Bipartite Graph is NM=l,pN-1, 447412, 18 lines

PickTheorem.h b, ¢ to a 2-SAT problem, so that an expression of the type | rep(i,0,n) rep(j,0,m) cin >> sparset[0][0][i][J];
Description: Pick’s Theorem: A =i + b/2 — 1. A is Area, I is internal (al|||b)&&(ta|||c) &&(d||||!b)&&... becomes true, or reports that it is unsatis- | rep (i, 0,n) rep(logj,1,LOGN) rep(j,0,m-(1<<logj)+1)
points, and B is Border points . fiable. Negated variables are represented by bit-inversions (~x). sparset [0] [logj] [1] [J] = min(sparset[0][logj-1][i][3],
Usage: TwoSat ts(number of boolean variables); sparset [0] [logj-1][1i][Jj+(1<<(logj-1))1);
ts.either (0, ~3); // Var 0 is true or var 3 is false rep(logi, 1, LOGN) rep(logj, 0, LOGN)
JosephusProblem.h ts.setValue(2); // Var 2 is true rep(i‘,O,n7(1<<logil)+1)
Description: There are n person in a table waiting to be executed. Person ts.atMostone ({0,~1,2}); // <f 1 .Of vars 0, ~1 and 2 are true rep (j, 0, m- (1<§loq3) fl) . ‘ . . o .
1 hold a knife. Each step whoever has the knife, kill the person next to him. ts.solve(); // Returns true iff . it is solvable sparset[logi] [logj] [1i][J] = min(sparset[logi-1][log]j][i][]
Who's alive at the end?) ts.values[0..N-1] holds the assigned values to the vars 1,
f8e6ed, 12 lines | Time: O (N + E), where N is the number of boolean variables, and E is the sparset [logi-1][logj] [i+(1<<(logi-1))11[31);
int x = 0; number of clauses. . cin >> st.fi >> st.se >> ed.fi >> ed.se; st.fi--; st.se-—;
’ 5f9706. 50 lines | - 77 - .
for (int i = 2; 1 <= n; ++1) int lenrow = 31-_ _builtin_clz(ed.fi-st.fi);
x = (x + 1) % i; struct TwoSat { int lencol = 31-_ builtin_clz (ed.se-st.se);
int N; . resl = min(min (min (sparset[lenrow] [lencol] [st.fi] [st.se],

int josephus(int n, int k) { vgctor<v1> gri sparset [lenrow] [lencol] [st.fi] [ed.se-(1<<lencol)]),

if (n == 1) return 0; Vi valu?s; // 0 = false, 1 = true sparset [lenrow] [lencol] [ed.fi-(1<<lenrow)] [st.se]),

if (k == 1) return n-1; ?woSat (int n = 0) : N(r?) s gr(2xn) {} sparset [lenrow] [lencol] [ed.fi-(1<<lenrow)] [ed.se- (1<<lencol)]);

if (k > n) return (josephus(n-1, k) + k) % n; int addvar() { // (_Op“‘m“l)

int cnt = n / k, res = josephus(n - cnt, k) - (n % k); gi'i?iiiizzti;f NarrowRectangle.h

res += (res < 0 ? n: (res / (k = 1))); get:.urﬁ Nt ’ Description: Define dp[i] [x]: the minimum cost to move the first i rect-

return res; } ! angles such that the last (the i-th) rectangle’s leftmost coordinate is x. This
¥ void either (int £, int j) { will lead to a solution for partial score. 8195b9. 25 lines

f = max(2+£, -1-2xf); priority queue<LL> kiri;

ErdosGallai.h

.. J = max(2xj, -1-2x3); priority_queue<LL, vector<LL>, greater<LL> > kanan;
Description: Given degree of n nodes. Is it possible to build the eraph? gr[f].push_back (§°1); int main() {
sort (d+1, d+n+l, greater<int>);) gr[j].push_back (£71); ios_base::sync_with_stdio (false); cin.tie(0); cout.tie(0);
for (i=1;i<=n;i++ cin >> n;
)i[i],: X[’ifl])Jr dril; void setValue (int x) { either (x, x); }_ for (int’i = 1; i <= n; i++) cin >> 1[i] >> r[i];
if (x[njel) { void atMostOne (const vis 1i) { // (optional) LL ans = OLL, lzl = OLL, lzr = OLL;
printf ("Not possible\n"); if (sz(li) <= 1) return; kiri.push(1[1]); kanan.push(1[1]);
continue; int cur = ~1i[0]; for (int i = 2; i <= n; i++) {
} rep(i,2,sz(11)) { lzr += r[i - 1] - 1[i - 11;
can = true; iltxt next = add\./allf(); 121 -= r{i] - 1[il;
for (k=1;k<=n;k++) { either (cur, ~li[i]); LL tmpl = kiri.top() + 1lzl, tmpr = kanan.top() + lzr;
sum = x[k]; el}ther(Cu].f, .next); if (1[i] <= tmpl) {
tmp = kx(k-1); either (~1i[i], next); Kiri.pop(

kiri.push(1[i] - 1zl); kiri.push(1[i] - 1zl);
cur = ~next;]

;
(tmpl - 1lzr); ans += llabs(tmpl - 1[i]);
tmp += min(d[i], k); } } else if (1[i] >= tmpr) {

)

for (i=k+1l;i<=n;i++) kanan.push
1

either (cur, ~1i[1]); (

if (sum > tmp) { kanan.pop(); kanan.push(1l[i] - 1lzr); kanan.push(l[i] -
can = false; }‘) . lzr);
break; vi val, comp, zi int time = 0; kiri.push (tmpr - 1z1); ans += llabs(l[i] - tmpr);
} J.ni.: dfs (int 1) {. ‘ . } else {
} int }ow = val[ll = T+t1me, x; z.push_back(i); kiri.push(1l[i] - 1z1); kanan.push(l[i] - lzr);
if (can) printf("Possible\n"); for(int e : gr(i]) if (!comple] }

)
low = min(low, vall[e] ?: dfs(e)); }

1 intf ("Not ibl ")

else printf("Not possibleint); if (low == vall[i]) do { cout << ans << ’\n’;
o« o x = z.back(); z.pop_back(); .

10.5 Minimum-Cut Problems comp[x] = Low; ’) return 0;

OpenPlth if (values[x>>1] == -1)

. g . . values [x>>1] = x&l;
Description: Open Pit 464011, 13 lines } while (x l= i);
for (int i = 1; 1 <= n; 1i++) { return val[i] = low;

int a, b; cin >> a >> b; }

	Contest
	Mathematics
	Data structures
	Numerical
	Number theory
	Combinatorial
	Graph
	Geometry
	Strings
	Various

