
PacilMate
Week 7 - Deliverable

Kelompok B14
Aditya Pratama 1706039490
Farah Nazihah 1906350761
Hocky Yudhiono 1906285604
Muhammad Urwatil Wutsqo 1906351101
Wiena Amanda 1806186591

https://gitlab.com/pacilmate
https://www.youtube.com/watch?v=MSDkZ8EgjQA 

https://gitlab.com/pacilmate
https://www.youtube.com/watch?v=MSDkZ8EgjQA


Latar Belakang
Pada masa pandemi ini, semakin ramai penggunaan berbagai 
aplikasi chat. Tidak jarang kita ingin melakukan janjian atau 
pertemuan dengan orang-orang. Namun terkadang kita lupa dalam 
membuat agenda tersebut di kalender masing-masing.

Setelah berjanjian, alangkah baiknya bila ada cara instan yang dapat 
langsung diimplementasikan di tempat. Misalnya dalam agenda 
organisasi, kita dapat mengatur sebuah agenda yang dapat diikuti 
semua orang secara langsung dari kotak chat.



Ide Aplikasi
PacilMate ialah Calender + Utility Bot yang lebih relate ke Mahasiswa 
Fasilkom. Bot ini dalam bentuk paling sederhana akan berfungsi sebagai 
kalender yang semua orang dapat gunakan fitur-fitur dasarnya seperti 
tambah event, hapus event, dan subscribe event, dan secara global dapat 
difungsikan sebagai kumpulan event, menjadi kalender. Kemudian juga ada 
grader yang bisa digunakan untuk mengadakan kuis secara global!



Tujuan dan Manfaat
Memberikan kemudahan dan utilitas 
lebih bagi para mahasiswa dalam 
beraktivitas melalui aplikasi Discord, 
salah satu platform chat yang sedang 
populer karena kemudahan adanya 
kanal suara dan kanal streaming serta 
pembagian kanal chat yang mudah.



Link Video Demo Aplikasi
https://www.youtube.com/watch?v=MSDkZ8EgjQA 

https://www.youtube.com/watch?v=MSDkZ8EgjQA


Tahapan Realisasi
● Menggunakan berbagai design pattern yang sesuai
● Menggunakan Java Spring Framework
● Menggunakan JDA sebagai Wrapper Discord, framework yang 

memudahkan pengembangan Discord Chat Bot
● Mengimplementasikan topik-topik yang seturut dengan pengembangan 

aplikasi ini.



Cara Kerja Aplikasi
Pada chatbot, akan ada controller dalam bentuk listener.

Event yang ada akan diberikan secara event driven. Chatbot akan memiliki 
beberapa Listener, yang masing-masing akan dikategorikan commandnya 
apa saja.

Setelah itu, listener akan memanggil service sesuai dengan kategorinya 
masing-masing.

Akan digunakan arsitektur MVC. Dengan view berupa chat dengan fitur-fitur 
markup language, Markdown, yang pada dasarnya serupa dengan Web App.



Cara Kerja Aplikasi



Cara Kerja Aplikasi
Akan ada model Events, Calendar, dan User. Dengan ERD Basis Data 
kira-kira sebagai berikut.



Cara Kerja Aplikasi
Akan ada beberapa class view lain untuk membuat struktur dari chat embed 
dari kalender dan events-events yang ada. Endpoint listener juga akan 
ditambahkan operasi CRUD lainnya. 😁



Pembagian Fokus Pengembangan Fitur
Fitur Lookup Global - Farah Nazihah
Fitur Calendar Lookup - Wiena Amanda
Fitur Builder dan Judge - Hocky Yudhiono
Fitur Manage Calendar dan Notification - Muhammad 
Urwatil Wutsqo
Fitur Manage Events dan Specific Lookup - Aditya 
Pratama



Fitur Builder dan Edit



Fitur Builder dan Edit

ID



Fitur Builder dan Edit



Fitur Builder dan Edit



Fitur Builder dan Edit
date_parse bisa berupa:
● today
● tomorrow
● next week
● next month
● next year
● dd-MM-yyyy

time_parse bisa berupa:
● {jam}h
● {menit}m
● hh:mm



Fitur Judge

Semua fitur Judge 
loading secara 
asynchronous, bisa 
melakukan proses 
lain selama 
menunggu koneksi 
dengan PacilJudge



Fitur Judge



Fitur Judge



Fitur Judge



Fitur Judge



Fitur Judge



Fitur Manage Calendar

Setiap user dapat mensubscribe satu 
atau beberapa calendar. User yang 
sudah mensubscribe sebuah calendar 
juga dapat membatalkan 
subscriptionnya.



Fitur Manage Event
Setiap user dapat mengatur event yang diinginkan ke 
dalam kalendernya sendiri dan mengatur event yang 
tidak diinginkan dalam kalendernya.



Fitur Notification #1: Remind Me

Fitur ini berfungsi layaknya countdown timer. 
User dapat mengatur berapa lama timer 
akan berjalan. Lalu bot akan mengirim 
notifikasi melalui direct message. 



Fitur Notification #2: Event Reminder

Fitur ini akan mengirim pesan 
reminder secara berkala melalui 
direct message kepada para 
subscriber dari sebuah kalender 
terkait event yang akan berlangsung.



Fitur lookup global #1



Fitur lookup global #2



Fitur lookup global #3



Fitur lookup calendar#1

Fitur ini akan menampilkan event 
selanjutnya sesuai yg diinput. 
misal !ev,1 yang berarti 
menampilkan 1 event selanjutnyaContoh event yang dimiliki



Fitur lookup calendar#2

Fitur ini akan menampilkan 
event secara lebih spesifik. 
bisa berdasarkan tanggal, 
tanggal-bulan atau 
tanggal-bulan-tahun.



Fitur lookup calendar#3
Fitur lookup calendar dapat menampilkan

seluruh event yang terdaftar pada 

salah satu calendar yang ada.



Penerapan Design Pattern di Code

● Chain of Responsibility Pattern, untuk datetime parser 
karena ada beberapa jenis. 🔗

● Mediator Pattern, sebelum masuk ke service, pesan dari 
controller mesti diparse terlebih dahulu, bisa dimanfaatkan 
sebuah service mediator. 🌉

● Singleton Pattern, ternyata wrapper Discord Bot sangat cocok digunakan bersama 
Spring Boot, Autowired yang digunakan secara default diterapkan secara Singleton. 🦴



Penerapan Design Pattern di Code
Sebuah tanggal bisa 
diparse dengan banyak 
cara, misal:

● 15-03-2021
● next year
● today
● tomorrow

Digunakan chain of 
responsibility 👍👍



Penerapan Design Pattern di Code
Sebuah Listener pada 
dasarnya akan dipanggil 
berulang-ulang kali oleh 
JDA. Sebelum memanggil 
service, Mediator akan 
dipanggil terlebih dahulu.

Hal ini memenuhi Single 
Responsibility Principle.



Penerapan Design Pattern di Code
● Builder Pattern, proses pembuatan message dan embed discord. 🏭
● Iterator Pattern, Listener ada banyak dan akan dilakukan iterasi 

untuk setiap listenernya. Proses ini sudah ada interface JDA-nya. ➰
● Observer Pattern, untuk mengabarkan notifikasi kepada setiap 

subscribernya. 🕶
● Proxy Pattern, sebuah Judge pada dasarnya akan memberikan 

banyak sekali informasi, butuh suatu proxy antara Judge dan 
Pengguna, melalui PacilMate.



Penerapan Design Pattern di Code
Di dalam message ada 
beberapa embed yang di 
dalamnya bisa diisi dengan 
berbagai informasi.

Disini cocok digunakan 
Builder Pattern. 🔨



Penerapan Design Pattern di Code
Ada notifier yang mengirim 
pesan sesuai jadwal, disini 
sangat berguna Observer 
Pattern!



Penerapan Design Pattern di Code
PacilJudge merupakan Microservices, API nya 
exposes terlalu banyak informasi, juga bisa 
down. Disini Proxy Pattern pada PacilMate 
sangat bergunaa! 😁🌎



Penerapan Clean Code
Interface first, No Code 

Duplicate SonarQube! Detects code smell, 
and Progresses of our codes!



Penerapan Clean Code
Checkstyle, Naming convention, 

Standardized Codes
(Camel case for methodsName and 

attributesName)
(Lower for packagename)

(Pascal case for ClassName) 😊



Penerapan Clean Code
Gitlab Branches, Issues, Cross Member 

Review, and Merge Requests
Semi-TDD, Interface → Live Tests 

→ Implementation → Tests



Penerapan Clean Code
Maximize Java Documentation For Public methods 

and Gitlab Wiki For Installing Guide 



Microservices?
Mengapa menggunakan 
microservices?
- Scalable 🐘
- Maintainable 🎾
- Testable 📄
- High Cohesion 👪
- Low Coupling 󰝋
- Centered Around 

Business Capability 💵



Microservices?
Mengapa tidak semua menggunakan microservices?

- Low Response Time Needed (We’re building a chat bot here) ⌚, untuk aplikasi skala kecil seperti 
ini, malah menambahkan waiting time.

- Users are often separated, Horizontal Scaling is more based! 📏
- Chat bot separated by module, bisa deploy banyak instance dengan fitur yang bisa dibuat 

berbeda! 🤖
- Aplikasi chatbot kami cukup monolithic, 🧠 memisahkannya hanya akan menambahkan 

workload, bottlecap di komunikasi. Instead lakukan refactor seoptimal mungkin, setiap 
aplikasi di dalam aplikasi tersebut dipisahkan berdasarkan service, sehingga masih bisa scaled 
masing-masing. Tapi………..



Penerapan Microservices

Mengapa dibuat microservices?

- ⛳ Independen, tidak ada 
hubungannya dengan kalender 
(aplikasi utama).

- Menilai bisa membutuhkan waktu ⌚, 
waktu fitur utama untuk melayani 
request lain bisa terganggu 😡.

- Yang paling penting:
Kalau user mengirim pesan yang 
berbahaya 😈, pacilmate tidak down 📉 
😭😭😭

REST API Based 
PacilJudge 󰥟

More microservices in the future(?)

PacilMate 1

This guy has 

separate DB

He is Independent 🏆

He can scale 

separately

He can talk with 2 Bots!

PacilMate 2

How they communicate?
Web client, asynchronously, 
statelessly!

No bottlecap!



Penerapan Microservices - Pacilmate Inside 🕸🕸🕸🕸!
Package by Feature (Services) vs Package by Layer

Not really “microservices”, but it’s less monolith and can be scaled!

controller

controller

controller

controller

controller

Mediator

Listener Service

Utilities

Listener

Listener

Listener

Listener

Mediator

MediatorMediator ServiceService

ServiceMediator Service

✔✔✔
❌❌❌



Penerapan Asynchronous Programming

PacilMate will run a thread 
that will check the latest 
event coming, and will notify 
user that subscribed to this!

PacilMate will Notify
your events!

PacilMate

Notification?

Observer Pattern!

User

Asynchronous programming bisa diterapkan dalam bentuk Async 
Spring! Chat Bot juga di dalamnya sudah banyak Rest yang sudah 
diintegrate oleh message queue JDA! Contoh: Fitur Ping!



Penerapan Asynchronous Programming

Pemanggilan Judge oleh PacilMate memiliki 
satu permasalahan, yaitu lama jika webclient 
tidak kunjung mendapatkan response. 

Bagaimana cara mempercepat hal ini?

Asynchronous Services
Mesti dilakukan pemanggilan secara asynchronous 
agar setiap fitur tidak terganggu oleh karena 
microservice ini!

REST API Based 
PacilJudge 󰥟

More microservices in the future(?)

PacilMate 1

This guy has 

separate DB

He is Independent 🏆

He can scale 

separately

He can talk with 2 Bots!

PacilMate 2

How they communicate?
Web client, asynchronously, 
statelessly!

Proxy Pattern to the rescue !

No bottlecap!



Penerapan Profiling
Spring Boot Actuators +
Spring Boot Admin + 
Micrometer + 
Prometheus + Grafana

Buat memonitor memori 
terpakai, memori bebas, 
disk usage, threads, 
uptime, environment,Saat sengaja dibuat spike request!



Penerapan Profiling
Bisa mengukur waktu ⌚ 
berjalannya suatu query 📚 
dengan annotation @Timed, 
menghitung 🖐 berapa kali query 
tersebut dipanggil 📞 dan 
diakses. 

Melalui Prometheus, dengan 
endpoint yang disediakan 
actuators! Di localhost bisa 
menggunakan SLF4J dan Intellij 
Profiler!



Terima Kasih


